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Chapter 1

Linear equations with constant

coeflicients

1.1 Introduction

A linear differential equation of order n with constant coefficients is an equation of
the form
agy™ +ary™ Y + -+ an 1y + any = b(x)

where ag # 0, a4, - ,a, are complex constants and b is some complex valued func-
tion on an interval /. By dividing by ay we can arrive at an equation of the same
form with ag replaced by 1. Therefore we can always assume ag = 1, and our

equation becomes
y(”) + aly(nfl) R anfly/ —+ any = b(gj) (11)

It will be convenient to denote the differential equation on the left of the equality
(1.1) by L(y). Thus
L(y) =y™ +ary™ Y+ + a1y + any

and the equation (1.1) becomes simply L(y) = b(x). If b(z) = 0 for all = in [
the corresponding equation L(y) = 0 is called a homogeneous equation, whereas if
b(x) # 0 for some x in I the corresponding equation L(y) = b(x) is called a non-
homogeneous equation. We give meaning to L itself as a differential operator which

operates on function which have n derivatives on I, and transforms such a function



¢ into a function L(¢) whose value at x is given by
L(¢(x)) = 6™ (2) + ar¢" V(@) + - + an1¢/(2) + and(2).
Thus
L(¢) = ¢ 4+ a10 ™Y + -+ a,_1¢ + ano.
A solution of L(y) = b(x) is therefore a function ¢ having n derivatives on I such

that L(¢) = b. If b is continuous on I, then it is possible to find all solutions of

L(y) = b(z). In this chapter we consider the case of second order equation (n = 2).

1.2 Second order homogeneous equations

Here we are concerned with the equation
L(y) =y" +ay +agy =0 (1.2)

where a; and a, are constants. We recall that the first order equation with constant

axr

coefficients ¥’ + ay = 0 has a solution e~*. The constant —a in this solution is

the solution of the equation r + a = 0. Since differentiating an exponential e’
any number of times, where 7 is a constant,always yields a constant times e"” it is
reasonable to expect that for some appropriate constant r, e™ will be a solution of
the equation (1.2). Let us try it for (1.2). We formulate the result as a theorem.

Theorem 1.1. Let ay,as be constants, and consider the equation
Lly) =y"+ay +ay =0

If r1,ry are distinct roots of the characteristic polynomial p, where

p(r) = 1%+ ayr + as,
then the functions ¢1, ¢ defined by

br=e"T, gy = (1.3)

are solutions of L(y) = 0. If r is a repeated root of the p, then the functions ¢, po
defined by
pr=¢€"" gy =wet? (1.4)

are solutions of L(y) = 0.

Proof. Consider the equation L(y) = 3" 4+ a1y’ + asy = 0 where a;, as are constants.
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Now, consider the function €. Then we find that

L(e™) = (e™)"+ar(e™) + ag(e"™)

= %" + ajre™ + age’™”

= (r* 4 air +ag)e’™,

and e will be a solution of L(y) = 0, i.e. L(e"™*) = 0, if it satisfies r* +a;r +ay = 0.
We let
p(r) = r* + air + as,

and call p the characteristic polynomial of L, or of the equation (1.2). Note that
p(r) can be obtained from L(y) by replacing y* everywhere by 7*, where we use the
conventions that the zero-th derivative of y, (), is y itself and that * = 1. From
the fundamental theorem of Algebra, we know that the polynomial p always has
two complex roots 71,79 (which may be real). If r; # ro, then p(r1) = 0 = p(rq).
Therefore L(e™*) = 0 = L(e™"). Hence €™* and €™* are two distinct solutions of
L(y) = 0. It is possible to find two distinct solutions in the case 1, = r also. Since

r1 is a root of p(r), p(r1) = 0. Hence €7 is one solution of L(y) = 0. Also, We have
L(e™) = p(r)e"™ (1.5)

for all 7 and . We recall that if r; is a repeated root of p, then not only p(r;) = 0,
but p'(r;) = 0. This suggests differentiating the equation (1.3) with respect to r.

Then we observe that since L involves only differentiation with respect to x,

%L(e”) =L (%(e“)) = L(ze™),

and therefore
L(Ierx) — Iemj)/,ﬁ—al(]}erz)l—|—CL2(LIZ‘€TI)

r2e™ 4+ 2re™ + a1e™ + ajxre’™ + agxe’™

(
= 7z
= [ar? +2r +a; + ayxr + agx] €
[P (r) +ap(r)] e

Now setting r = 7, in this equation we see that L(ze™*) = 0, thus showing that

re™* is another solution in case r; = r9. Hence the theorem. O

Remark 1.2. If ¢, ¢5 are any two solutions of L(y) = 0, ¢1, ¢2 are any two constants,

then the linear combination of two solutions ¢ = ¢; ¢1 + ¢ ¢4 is also a solution of



the equation L(y) = 0. Indeed

L(¢) = (c1 ¢14c2 d2)" +ar1(cr ¢+ co ¢a2) + as(cr 1 + ¢ )
= 1] + 2y + 1010 + Caa20y + cra101 + Cra20;
= ¢ L(¢1) +ca L(¢2)
=0

The function ¢ which is zero for all x is also a solution, the trivial solution of
L(y) = 0.

Example 1.3. Consider the equation ¢ =" + ¢ — 2y = 0.
The characteristic polynomial is p(r) = r? 4+ — 2 and its roots are —2 and 1.

Every solution ¢ is of the form ¢(x) = cie™%* + cpe® where ¢y, ¢y are constants.

Example 1.4. Consider the equation 3" + w?y = 0 where w is a positive constant.

The characteristic polynomial is p(r) = r? + w? and its roots are iw and —iw.

Every solution ¢ is of the form ¢(x) = c;e™® + cye™™?® where ¢y, ¢, are constants.

Taking ¢, = % and ¢y = % we see that

1 . 1 .

eiw:p + efiwx
2
= COSWT

1
2i

—il we see that

and ¢ = 3

Therefore coswz is a solution. Similarly, taking ¢; =

1 iwe -1 —iwx
o(z) = 2—?,6 + '22_6
plwr _ p—iwz

21
= Sinwx

Therefore sinwz is a solution. The equation 3’ + w?y = 0 is called the harmonic

oscillator equation.

Exercise:
1. Find the solution of the following equations.
(i) y" —4y =0 (i) 3y" +2y' =0



(iii) " =0 (iv) " + 16y =0

(V) y' +2iy +y=0 (vi) y" — 4y’ +5y =0

2. Consider the equation y” 4+ 4" — 6y =0
(a) Compute the solution ¢ satisfying ¢(0) = 1, ¢'(0) = 0.
(b) Compute the solution # satisfying ¢(0) = 1, ¥'(0) = 0.
(c) Compute ¢(1) and 1(1).

3. Find all solutions ¢ of ¢y’ + y = 0 satisfying

(1) 6(0) = 0, ¢() = 0 (i)6(0) = 1, ¢/(r/2) = 2

(i) 6(0) =0, ¢(m/2) =0 (iv) 6(0) = 0, 6(x/2) = 0.

1.3 Initial value problems

Every solution of the equation
L(y) =y + a1y + azy = 0

is a linear combination of the solutions (1.4) or (1.5) will depend on showing that
the initial value problems for this equation have unique solutions. An initial value

problem for L(y) = 0 is a problem of finding a solution ¢ satisfying

dlw) =a,  &(x0) =, (1.6)

where z( is some real number, and «, 3 are two given constants. Thus we specify

¢ and its first derivative at some initial point xy. This problem is denoted by

L(y) =0, ylxo) =, y'(x0) =5, (1.7)

Theorem 1.5. (Existence Theorem) For any real xy, and constants «, (3, there

ezists a solution ¢ of lhe initial value problem (1.7) on —oo < x < 00.

Proof. We show that there are unique constants ¢y, ¢y such that ¢ = c1¢1 + co
satisfies (1.6), where ¢, ¢ are the solutions given by (1.3) or (1.4). In order to

satisfy the relations (1.6) we must have

P(xg) = c101(x0) + c202(10) =
¢'(w0) = 191 (x0) + cadp(w0) = 3



By representing the equations (1.8) in the matrix form, we have

¢1(wo)  P2(x0) a )\ _ [«
¢ (o) P3(20) Ca g
This matrix equation will have unique solution ¢y, ¢y if the determinant

¢1(l‘0) ¢2(ZL‘O) _ . /x B /:B i
& (20) (o) = ¢1(x0)Ph (o) — P (x0)p2(xg) # 0.

In case 11 # 719,
¢l = 67“1&7’ ¢2 = 6T2$7

and

A = rye"1 %00 _ p eT1T0 7270 — (7’2 _ r1>€(r1+r2)xo’
which is not zero, since e("*72)%0 £ 0 and ry # r».

In case r; = 79,
J— T — 1T
¢1_61 ’ ¢2_I€1 )

and

/A = %o (emwo 4 3307'16”950) — P e 0T — e2riTo £ 0.

Therefore the determinant condition is satisfied in either case. Thus, if ¢q, ¢y are

the unique constants satisfying (1.8), the function
¢ = c1¢1 + 202
will be the desired solution satisfying ¢(zg) = «a, ¢ (x9) = 0. ]

We have shown that there is a unique linear combination of ¢; and ¢» which is a
solution of (1.7). Although it is not quite obvious, it turns out that this solution is
the only one. Before proving this we give an estimate for the rate of growth of any
solution ¢ of L(y) = 0, and its first derivative ¢', in terms of the coefficients 1, a;, ay

appearing in L(y). As a measure of the "size” of ¢ and ¢’ we take
lo@)] = (le(@)]* + |0/ (2)[)""?,
where the positive square root is understood. The ”size” of L will be measured
by
k=14 |a| + |az|

Note that If b and ¢ are any two constants, the we have the inequality that

2 [b] le| < [b* + |cf*. (1.9)



This inequality results by noticing that
0 < (o] = [cl)? = [b* + |c]* — 2[blc]-

Theorem 1.6. Let ¢ be any solution of L(y) = y" + a1y’ + asy = 0 on an interval

I containing a point xo. Then for all x in I

lo(zo)ll M=l < J|g()]| < [lg (o)l €M (1.10)
where [|¢(x)]| = (|6(2)]? +[¢'@)*)"%, k =1+ |ar] +as].

Proof. Remark: Geometrically the inequality (1.10) says that ||¢(x)| always re-

mains between the two curves.
y = l|¢(zo)|| e *=m0) and y = [|¢(z0)| eF==r0);
We let u(z) = ||¢(x)||” for € I. Then

u(@) = o) +1¢()]”
= o
= oz

'(z)¢/ (), since |z|* = 22
(

Then

¢(@)¢/ (x) + ¢/ (2)d(x) + ¢'(2)¢" (x) + ¢" () ()
|6 (x

u'(x)

/()]

(@) (z) + ¢ (2)9(x) + ¢/ (2)¢" (x) + ¢ (2)d/ ()]
[6(2)¢ ()] + |6/ ()9 ()| + |6/ (2)" (2)| + |¢" (x)/ ()]
= o()l¢/(@)] + ¢ (@)l|¢(x)] + |¢' (@)[|¢" ()] + ¢ (2)[[¢' ()]
()¢ (= M)+ |¢'(2)ll¢" ()] + 10" ()||¢' ()]
(

IA

)
)
)
)

|¢(x )+ ¢ (2
2lp(@)ll¢' (2)] + 21¢' (2)||¢" ()]

2 |¢()[|¢'(x)] + 2 [¢'()] (la]|¢'(2)] + lazlp(x)])

= 2 (1+laa]) [o(@)[|¢' ()] +2 ar]¢' (2)[?

(1+ az]) (|6(2)]* + |¢'(2)]*) + 2 Jas||¢'(2)]?, using(1.9)
= (1+]aal) [o(2)]* + (1 + |az]) |¢' ()] + 2 [aa||¢ ()]

(L + az]) [6(@)[* + (1 + Jaz| + 2 |ai]) |¢' ()]

2 (1+]ai| + laz]) [o(2)* + (1 + |a1| +|az]) [¢(2)[?

2 (1+ |a1] + |az]) (lo(x)* + ¢/ (2)]?)

2 k u(x), where k =1+ |ai| + |as|

IN

IA

I VAR
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Therefore |u/'(z)| <2 k u(z). That is =2 k u(x) < u/(z) <2 k u(x).
Take v/(x) <2 k u(z). Then

(@) =2 ku(z) < 0
e*2kxu/(3;)+u(x)(_2ke—2kz) <0
(e u(w))” < 0
Let g < x
/ (™™ u(t)) dt < 0
e—?kw U([lf) e 2kxo U(ZL‘()) S 0
€—2k;r u(x) S 6—2kx0 U(ZL‘O)
u(z) < ) y(zy)
lo@@)* < llgxo)||* &)
lo@) < ool eHe=)

Similarly taking —2 k u(z) < u'(z) we can show that ||¢(z¢)|| e *@=20) < ||é(z)]|.

Hence

lp(ao)l| e =) < lp(x)|| < llo(xo)|| €™ when zo < = (1.11)
In a similar way, we can show that

lp(ao)l| e < lp(2)|| < lo(xo)|| €0~ when & < o (1.12)

Hence from (1.11) and (1.12), we have
p(zo)|| e M=ol < ||p(2)|| < ||b(zo)| erlz—ol

where k =1+ |ai| + |ag|. Hence the theorem. O
Theorem 1.7. (Uniqueness Theorem) Let «, § be any tw0 constants, and let zq be

any real number. On any interval I containing z there exists at most one solution

¢ of the initial value problem L(y) =0, y(xo) = «a, y'(xo) = 3.

//_I_

Proof. Suppose ¢ and v are two solutions of the initial value problem L(y) =y
a1y + asy = 0, y(zo) = «, y'(x9) = B. Then we have to prove that ¢(z) = ¥ (z)

11



for all . Let x = ¢(x) — ¢¥(z). Then L(x) = L(¢) — L(¢») = 0, and x(x¢) = 0,
X'(zo) = 0. Then ||x(xo)|| = 0, and applying the inequality (1.10) to y we see that
|x(x)]| = 0 for all x in I. This implies that x(x) = 0 for all z in I, or ¢ = 1, proving

our result. 0

Theorem 1.8. Let ¢, 1 be the two solutions of L(y) = 0 given by (1.3) in case
1 # 19, and by (1.4) in case vy = 1o. If ¢1,co are any two constants the function
¢ = 101 + a0 1s a solution of L(y) =0 on —oco < x < co. Conversely, if ¢ is any

solution of L(y) = 0 on —oo < x < 00, there are unique constants ci,ce such that

¢ = c1¢1 + 0.

Example 1.9. Find the solution of the initial value problem
y' =2y =3y =0, y(0) =0y(0) = 1.
Soln:
The characteristic polynomial is 72 — 2r — 3 and its roos are 3, —1. Then
y(r) = 163 + cye™™ is a solution of given equation.
Also y(0) = 0 implies that ¢; + co = 0 and '(0) = 1 implies that 3¢; — ¢ = 1.

solving these we have ¢; = % and ¢y = =L

1
Hence y(z) = 1e* — 1e™ is a solution of the given initial value problem.

Exercise:

1. Find the solution of the following initial value problem.
(i) y" + 10y =0, y(0) = 7, y'(0) = =

(i) y"+ (3i— 1)y —3iy =0, y(0) =2, ¥(0) =0

1.4 Linear dependence and independence

Two functions ¢y, ¢ defined on an interval I are said to be linearly dependent on
I if there exist two constants ¢y, ¢a, not both zero, such that ¢;¢1(x) + caga(x) =0
for all z in I. The functions ¢, ¢o, are said to be linearly independent on I if they
are not linearly dependent there. Thus ¢, ¢ are lincarly independent on [ if the
only constants ¢y, ¢ Such that ¢;¢;(z) 4+ caga(x) = 0 for all z in I are the constants

0120,62:0.

The functions defined by (1.3) are linearly independent on any interval I. For

suppose

12



crez + e =0 (1.13)

"% we obtain

c1 + C2e(rz—r1)x =0,

for all x in I. Then, multiplying by e~

and differentiating these results

co(ry — rp)el2 T = (),

ro—11)T

Since 71 # 19, and el is never zero, this implies ¢co = 0. But if ¢ = 0, the

relation (1.13) gives ¢;e™* = 0, or ¢; = 0 also.

Similarly the functions ¢, ¢ defined by (1.4) are linearly independent on any
interval I. The proof is the same. If

T

c1e* 4+ coxe™x =0

—rix

on I, by multiplying by e we get ¢; + cor = 0, and differentiating we obtain

co = 0, and this implies ¢; = 0.

There is a simple test which enables us to tell whether two solutions ¢, ¢o, of

L(y) = 0 are linearly independent or not. It involves the determinant

¢1 b2

o o = ¢10h — 9102

W(o1, ¢2) = ‘

which is called the Wronskian of ¢1, ¢5. It is a function, and its value at z is denoted

by W (o1, ¢2)(x).

Theorem 1.10. Two solutions ¢1,¢s of L(y) = 0 are linearly independent on an
interval I if and only if W (g1, ¢2)(x) # 0 for all x in I.

Proof. First suppose W (1, ¢2)(x) # 0 for all x in I, and let ¢, c3 be constants such
that

c101(z) + capa(z) =0 (1.14)

for all z in I. Then also
1@ () + cagy(x) =0 (1.15)

for all z in I. For a fixed x the equations (1.14), (1.15) are linear homogeneous
equations satisfied by ¢y, co. Hence the matrix representation of the equations (1.14)
and (1.15) is

13



(5o ()-(0)

Since the determinant of the coefficients of ¢1,¢o in (1.14) and (1.15) is just
$1 b2

W (¢1, ¢2)(x) which is not zero. Therefore the matrix o o
1 P2

) is non-singular.

0
Hence the above matrix equation has unique solution namely E That is

¢ =0, cg = 0. Therefore ¢; = 0, ¢o = 0 is the only solution of (1.14) and (1.15).
This proves that ¢, ¢o are linearly independent on I.
Conversely, assume ¢1, ¢o are linearly independent on I. Suppose that there is an

zo in I such that W(¢y, ¢2)(zo) = 0. This implies that the system of two equations

c191(x0) + cag2(w0) =

0
(1.16)
c101(z0) + 20 (w0) = 0

has a solution ¢y, co, where at least one of these numbers is not zero. Let ¢q,cy be
such a solution and consider the function ) = ¢1¢1 + cagpo. Now L(¢p) = 0, and from
(1.16) we see that

¥(xo) =0, ¥'(z0) = 0.
From the Uniqueness theorem (Theorem 1.7), we infer that ¢(x) = 0 for all z in I
and thus

c19(x) + caa(z) =0
for all x in I. But this contradicts the fact that ¢, ¢o are linearly independent on

I. Thus the superposition that there was a point xy in I such that W (¢, ¢9) = 0
must be false. We have consequently proved that W (¢, ¢2) #0 for all z in 1. [

It is easy to see that we need compute W (¢1, ¢2) at only one convenient point to

test the linear independence of the solutions ¢1, ¢s.

Theorem 1.11. Let ¢1,¢9 be two solutions of L(y) = 0 on an interval I and let
xo be any point in I. Then ¢1,¢po are linearly independent on I if and only if

W (1, ¢2)(x0) # 0.

Proof. 1f ¢1, @5 are linearly independent on I then W(¢q, ¢2) # 0 for all z in I by
Theorem 1.10. In particular, W (¢, ¢2)(z¢) # 0

14



Conversely, suppose W (¢1, ¢2)(zo) # 0, and suppose ¢;, ¢ are constants such that
c1¢r + capp = 0

for all x in I. Then we see that

c Zg) + ¢ x9) =0
1¢/1( 0) 2@15/2( 0) (1.17)
197 (w0) + (o) = 0
and since the determinant of the coefficients is W (¢, ¢2) # 0, we obtain
c1 = cg = 0. Thus ¢1, @5 are linearly independent on I. O

Using the concept of linear independence we can show any two linearly indepen-
dent solutions of L(y) = 0 determine all solutions, in the sense of the following
theorem.

Theorem 1.12. Let ¢1, o be any two linearly independent solutions of L(y) = 0
on an interval 1. Every solulion ¢ of L(y) = 0 can be written uniquely as ¢ =

c1P1 + cogo, where ¢y, co are constants.

Remark 1.13. The importance of Theorem 1.12 is that we need only to find any
two linearly independent solutions of L(y) = 0 in order to obtain all solutions of
L(y) = 0.

Example 1.14. Consider the equation y” + y = 0. Its characteristic polynomial
is 72 4+ 1 and its roots are 7, —i. Hence it has two solutions e’ and e~‘, which are
linearly independent, since the wronskian of two functions id non-zero for all x. But
it also has the two linearly independent solutions cos z, sinx. Sometimes it is more
convenient to express a solution in terms of the latter set of functions, especially

when we want to observe the oscillatory character of a real-valued solution.

Exercise:

The functions ¢1, ¢, defined below exist for —oco < x < oo. Determine whether
they are linearly dependent or independent there.

(i) ¢1(x) = 22, ¢o(x) = 52°

(i) ¢1(z) = sinx, ¢o(z) =

(iii) ¢y (x) = cosz, po(x) = 3(e™® + 7@)

15



1.5 A Formula for the Wronskian

There is a convenient formula for the Wronskian of two solutions of L(y) = 0, which

results from the fact that W (¢y, ¢o) satisfies a first order linear equation.

Theorem 1.15. If ¢y, ¢o are two solutions of L(y) = 0 on an interval I containing

a point xg, then

W (1, d2)(z) = e E@=20) W (g ) (0). (1.18)

Proof. Let ¢1, ¢2 be two solutions of L(y) = 0. Then we have
¢7 + a1y + azpy = 0 and ¢y + a1¢5 + azdy =0
and mulplying the first equation by —¢s, the second by ¢, and adding we obtain
(9195 — ¢ a) + ar(p1y — P12) = 0.
we notice that if W = W(¢y, ¢a),
W = 105 — ¢ida, and W’ = 105 — ¢{¢o.
Thus W satisfies the first order equation
W'+ aW = 0.

Hence W(z) = ce~**, where ¢ is some constant. Setting x = zy we see that

W(zg) = ce” 70,

or
c = e MW (z9),
and thus
W(x) = e~ @20 (z),
which was to be proved. O

1.6 Non-homogeneous equation of order two

We turn now to the problem of finding all solutions of the equation
L(y) =y" + a1y’ + azy = b(z),

where b is some continuous function on an interval I. Suppose we know that 1, is

a particular solution of this equation, and that ¢ is any other solution. Then

L( =) = L) — L(t) =b—b=0
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on I. This shows that ¢) — v, is a solution of the homogeneous equation L(y) = 0.
Therefore if ¢, ¢ are linearly independent solutions of L(y) = 0, there are unique

costants ¢y, ca Such that
=1y = 191 + 200
In other words every solution ¢ of L(y) = b(x) can be written in the form

Y =y + 101 + 202
and we see that the problem of finding all solutions of L(y) = b(z) reduces to finding

a particular one v, and two linearly independent solutions ¢1, ¢ of L(y) = 0. Note

that if
L(,) = b and L(¢1) = L(¢) = 0.

and ¢y, co are any constants, then

Y =1y + 101 + 202
satisfies L(¢) = 0.

To find a particular solution of L(y) = b(x) we reason in the following way. Every
solution of L(y) = 0 is of the form ¢;¢; + capo Where ¢, co are constants, and ¢, ¢o
are linearly independent solutions. Such a function c¢;¢; 4 co¢ can not be a solution
of L(y) = b(z) unless b(xz) = 0 on I. However, suppose we allow ¢y, ¢y to become
functions wuy, uy (not necessarily constants) on I, and then ask whether there is a
solution of L(y) = b(x) of the form u;¢; +ua¢py on 1. This procedure is known as the
variation of constants. The remarkable thing is that it works. We argue in reverse.
Suppose we have a solution of L(y) = b(z) of the form w ¢ + uspe, where uy, ug are

functions. Then

(U1 + ua2)"” + a1 (w11 + uag2)’ + as(u1 1 + u202)
= w1 L(¢1) + usL(¢2) + (dr1uy + d2uy) + 2(d1u) + Phus) + as(Pru + dous)
= +(P1uf + douy) + 2(Phuy + Phuy) + az(druy + gauy) = b
and we noticed that if
gblull + gbgu’Q =0 (1.19)

then

0 = (p1u] + pauh) = (Phuf + Phuy) + (pruf + ¢ouly), and we must have
1)+ gyuy =b. (1.20)

looking at this reasoning in reverse we see that if we can find two functions wuy, uy
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satisfying (1.19), (1.20), then indeed u; ¢y + uggpe will satisfy L(y) = b(z).

The equations (1.19), (1.20) are two linear equations for u}, uf, with a determinant
which is just the Wronskian W (1, ¢s). Since we assumed ¢q, o to be linearly
independent this determinant is never zero on I, and there exist unique solutions

uy, uh. Indeed, a little calculation shows that
o P2 b I @1 b
Uy = ——, Uy = ———.
W(¢17¢2) W(¢17¢2)
In order to obtain wuy, us all we have to do is integrate. For example, if x is in [

we may take for u;, us
)

/W¢1,¢2 " /W¢17¢2 o

The solution v, = u1¢1 + uz¢, then takes the form

[ [0 )6a(x) — 1(@)da(t)] B(E)
Up() —/ W (600 dt. (1.21)

Zo

We summarize our results,

Theorem 1.16. Let b be continuous on an interval 1. Every solution v of L(y) =

b(x) on I can be written as
¥ =1y +c1d1 + 202

where 1, s a particular solution, ¢1, @2 are two linearly independent solutions of
L(y) = 0, and c1,cy are constants. A particular solution 1,, is qiven by (1.21).

Conversely every such v is a solution of L(y) = b(z).
Example 1.17. Consider the equation y” — ¢y’ — 2y = e™*.
The characteristic polynomial is
r?—r—2=(r+1)(r-2),

and therefore two linearly independent solutions ¢q, ¢» of the homogeneous equa-

tion are
d1(x) =€ Po(x) = e
A particular solution 1, of the non-homogeneous equation is of the form
Up(x) = uy(x)e™ + ug(x)e?,
where u}, u), satisfies the equations (1.19) and (1.20)
¢ruy + dous = 0 and @huy + Phuy =
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That is,
uhe™® + ubhe* =0

—uje ™ 4 2ube* = e 7.

The matrix representation of above equations are

et e up \ (0
—e™T 2e% ul T\ e

up \ 1 2e% e 0o\ 1 —e”
U,2 o 3 ex e T e T e T - 3 et e—2x

Therefore u} =

(—e”) and uy = — (e7**). Then on integration we obtain

Je

u; = —x and uy = —e

3 9

3 e

-3z

Hence the particular integral

z _, 1 _,
¢p:U1¢1+U2¢2=—§e —5¢ "
Thus the general solution ¥ of the non-homogeneous equation has the form

r _ _
Y=cre " Fpe? — = et — —e .

3 9

where ¢y, co are any two constants.

Exercise: Solve the following equations

(a) 4y —y =e” (b) y" — 7y + 6y = sinx

(c) v + 4y = cosz (d) y" — 4y + By = 3e™ + 222
(e) ¥y + 9y =sin3z (f) 6y" + 5y — 6y =2
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Chapter 2

Linear equations with constant

coeflicients

2.1 The homogeneous equation of order n

Everything we have done for the second order equation can be carried over to the
case of the equation of order n. Now let L(y) be given by
L(y) = y(n) + aly(n_l) + a2y(n_2) + e + any’

where aq,as, - ,a, are constants. We try to solve L(y) = 0 as before by trying an

exponential €. We see that
L(e™) = p(r)e’™, (2.1)

where p(r) = " 4+ ay7™" ' 4 agr™ 4 -+ ay,.

We call p the characteristic polynomial of L. If ry is a root ot p, then clearly

L(e"*) = 0, and we have a solution e"*. If r; is a root of multiplicity m; of p, then
p(rl) - 07 p/(rl) - 07 p”(rl) - 07 e 7p(m1_1)(rl) = 0.

If we differentiate the equation (2.1) k times with respect to r, we obtain

8k rT ak rT o k _rx

k(k=1) (k-2)

_ {pw)%pw—w(rm D) p(r)at| €
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Note: If f and g are two functions having k derivatives, then

Thus for k = 0,1,--- ,m; —1, we see that zFe™® is a solution of L(y) = 0. Repeating

this proress for each root of p we arrive at the following result.

Theorem 2.1. Let ry,79,--- , 15, be the distinct roots of the characteristic polymo-
mial p, and suppose r; has multiplicity m; (thus mi+mo+---+ms=mn). Then the

n functions
erlx’ xerla:’ . ’xml—le’rlx;

mg—lergx. .

o roxT
€ , re y T, ) )

ersx’ xersx’ . 7xmsflersar

are solutions of L(y) = 0.

Definition 2.2. The n functions ¢y, ¢, ---, ¢, on an interval I are said to be
linearly dependent on I if there are constants ¢y, ¢, - -+ , ¢, not all zero, such that
c1¢1+ Cada + -ty =0

for all  in I. The functions ¢1, ¢o, - - - , ¢, are said to be linearly independent on I

if they are not linearly dependent on I.

Theorem 2.3. The n solutions of L(y) =0 given by
T T mi1—1_7r1x.
et opett e T el

67"2907 $€T2x, . 7l,mgflergm; cee

GTSm, mersx’ . ’xms—lersm

are linearly independent on any interval I.

Proof. Suppose we have n constants

Cij (Z‘:1727"'78; jzovla"'ami_l)

such that

s m;—1

Z Z Cij xl eli® (2.2)

i=1 j=0

on /. Summing over j for fixed 7, we let
m;—1

Py(x) = > ¢y
=0

be the polynomial coefficient of e"* in (2.2). Thus we have

P (x)e"® + Py(x)e™* 4 - - - 4+ Py(z)e™* =0 (2.3)
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on /. Assume that not all the constants c¢;; are 0. Then there will be at least one
of the polynomials P; which is not identically zero on I. By relabeling the roots r;
if necessary we can assume that Pj, is not identically zero on I. Now (2.3) implies
that

Py (x) + Py(z)e™™ ™% ... Py(x)el= )T =0 (2.4)

on /. Upon differentiating (2.4) sufficiently many times (at most m; times) we
can reduce Pj(z) to 0. In this procoss the degrees of the polynomials multiplying
e(rs=m)% remain unchanged, as well as the non-identically vanishing character of any
of these polynomials. We obtain an expression of the form

Qa(z)el2™ )7 L Qq(x)eTIT 4o 4 Qy(x)els )T = 0

or
Q2(x)e™” + Q3(x)e™™ + - -+ + Qs(x)e™* =0
on I, where the (); are polynomials, deg@; = deg P;, and ()5 does not vanish

identically. Continuing this process we finally arrive at a situation where
Ry(z)e™* =0 (2.5)

on I, and Ry is a polynomial, deg R; = deg Ps, which does not vanish identically on
I. But (2.5) implies that Rs(x) = 0 for all  on I. This contradiction forces us to
abandon the supposition that P; is not identically zero. Thus Ps(x) = 0 for all x in
1, and we have shown that all the constants ¢;; = 0, proving that the n solutions

given in Theorem are linearly independent on any interval [. O]

Example 2.4. Consider the equation y"” — 3y’ + 2y = 0.

The characteristic polynomial is p(r) = r® —3r+2 and its roots are 1,1, —2. Thus
three linearly independent solutions are given by

x T —2x
e, xr e, e ,

and any solution ¢ has the form
&(z) = (c1 + cam)e® + cze™ 22,

where ¢y, ¢9, c3 are any constants.

Exercise: Determine whether the set of functions defined on —oco < z < oo are

linearly independent or dependent.
(a) ¢1(2) =1, ¢o(z) =7 ¢3(z) =2°
(b) ¢1(x) = €, ¢o(x) =sinx ¢3(x) = 2cosx
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(c) ¢1(x) =z, da(z) = €™ s(w) = |zl

Exercise: Find the solutions of the following equations:

(a) y" —8y =0 (b) y¥ + 16y =0
() y" = 5y" + 6y =0 (d) ¥ +5y" + 4y =0
(e) y" =3y —2y =0 (f) y4) — 16y = 0

Exercise: Compute the wronskian of four linearly independent solutions of the

equation y) + 16y = 0.

2.2 Initial value problems for n-th order equa-

tions

An initial value problem for L(y) = 0 is a problem of finding a solution which
has prescribed values for it, and its first n — 1 derivatives, at some point zy (the
initial point). If ay, e, - , a,, are given constants, and z; is some real number, the

problem of finding a solution ¢ of L(y) = 0 satisfying
d(x0) = ar, ¢ (o) = ag, -+, 0"V (20) = an,
is denoted by
L(y) = 0,y(z0) = a1,y (x0) = ag,- -,y V(w) = .

There is only one solution to such an initial value problem, and the demonstration
of this will depend on an estimate for the rate of growth of a solution ¢ of L(y) = 0,
together with its derivatives ¢/, --- , ™ 1. We define ||¢(z)|| by

8(@) = [lo@P + -+ o0 @]

positive square root being understood, and give the analogue of Theorem 1.6.

Theorem 2.5. Let ¢ be any solution of L(y) = y™ + a1y™ Y + - +a,y =0 on
an interval I containing a point xo. Then for all x in I,
[p(o)l| e M=l < o) < lld(xo)|l o=l (2.6)
1/2

ahere l6(2)| = (10()? + |6/ @)+ + oD (@)) ",
b= 1o+ lan] + lag] + -+ [l
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Proof. Letting u(z) = ||¢(z)||* for 2 € I. Then

u(@) = o) +1¢' @)+ + [o" D (@)
¢'(2)¢/ (x) + -+ + ¢V (2)p(nD(z), since |z|* = 27
¢ (2)@ () 4 - + ¢V (2) (=1 ()

u'(z) = cb( )¢ (2) + ¢/ (x)d(x) + ¢ (2)¢" (x) + ¢" ()¢ (x)
s ¢ (@)D (2) + 6D () ()
()] = ch( )¢ (x) + ¢ (2)(x) + ¢ ()¢ (x) + ¢ (x) ()
+ ¢ (2)o D (2) + "D (2) 6 (2))|

| ()¢ ()| + | (2) ()| + ¢/ (2)" ()] + ¢ ()& ()]
A [ (@)D ()] + [ (1)) ()

= |¢(w)||¢’( )+ 16 (@)[[o(x)| + 16 (2)||¢" ()] + 16" (2)||¢/ (2)]
+oe [0 (@) 60D (@) + [ ()] ()]

= |p(@)[|¢'(2)] + |¢'(@)l|p()] + &' (2)|¢" (2)] + [¢" (2)]|¢' (2)]
+o [0 (@) oM D (@)| + [0V ()6 (2))]

2|¢()[1¢' ()] + 2| ()] |¢" (x)] + - - + 2" V()] ¢! ()]

2 [p(2)[|¢' (@) + 2 [¢"(2)[|¢" (z)| + - - - +

20"V ()] (Jaa|lo™ V()] + |azl|6" 2 (@) + - - + |anl|o(z)])

(1 + lan))|p(2)]* + 2 + [a" D] (@) + -+ +

2+ lar)|6" 2 (@) P + (14 2|ax| + |az| + - +|an])|¢" V() [?, using(1.9)

2(1+Ia1|+|a2|+---+Ian|)|¢<:v)|2+2(1+la1|+|a2|+---+|an|>|¢’(:c>l2

+oo 4 2(1+ Jag| + lag] + -+ + [an]) 0" (2)

+2(1+ |aa| + las| + -+ + |an])| 0"V (2)?

= 21+ || + [az| + -+ |an]) (Jo(@)P + ¢/ (@)]* +--- + [0 (z) )

= 2ku(x), where k =1+ |at|+ |as| + -+ |ay]

R

T

8

IA

IN IA

IN

Therefore |u/(z)| <2 k u(z). That is =2 k u(x) < u/(z) < 2 k u(x).
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Take u/(z) <2 k u(z). Then

u'(z) =2 ku(z) < 0
G_le‘u/(l')+u(x)(_2ke—2kx) <0
(e u(x)) < 0
Let g < z
/ (e u(t)) dt < 0
6—2kx U(ZL‘) e—2kac0 U(J}O) S 0
€f2km UJ(LL’) S 672143:0 U(]}O)
u(x) < HEE) gy(zy)
@2 < )| e
lo@) < ool =)

Similarly taking —2 k u(z) < u'(z) we can show that ||¢(z¢)|| e @20 < ||o(z)]|.
Hence
lo(zo) | e < [lg(2)]| < [|@(wo)|| "=~ when zy < @ (2.7)

In a similar way, we can show that
lp(o)ll e~ < lg(2) || < lld(zo)l 0™ when & < g (2.8)

Hence from (2.7) and (2.8), we have
lg(zo)| e =l < Jlg(x)]| < llo(o)l| €=l
where k =1+ |a1| + |az| + - - - + |a,|. Hence the theorem. O

Theorem 2.6. (Uniqueness Theorem) Let oy, as, -+, a, be any n constants, and
let g be any real number. On any interval I containing x, there exists at most one
solution ¢ of L(y) = 0 satisfying

d(z0) = o, ¢(m0) =z, -+, "V (mg) = .

Proof. The proof is the same as that of Theorem 1.7.
Suppose ¢ and 1 are two solutions of the initial value problem L(y) = 0, y(x¢) =

ar, ¥(zo) = a, -+, y™Y(xg) = a, on I. Then we have to prove that ¢(z) =
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Y(z) for all x. Let x = ¢(x) — ¢(x). Then L(x) = L(¢) — L(¢p) = 0, and x(zo) =

0, X'(zo) =0, ---, x" V(x) =0. Then ||x(z0)| = 0, and applying the inequality
(2.6) to x we see that ||x(x)|| = 0 for all  in I. This implies that y(z) = 0 for all
x in I, or ¢ = 1, proving our result. ]

Definition 2.7. The wronskian W (¢, ¢a, - - - , ¢,,) of n functions ¢y, @9, - - - , ¢, hav-

ing n — 1 derivatives on an interval [ is defined to be the determinant function

o1 O
W(¢1,¢2,"' 7¢n): gbzl ¢n
(bgn.fl) o (bglnfl)

Theorem 2.8. If ¢y, o, -+, ¢n are solutions of L(y) = 0 on an interval I, then
they are linearly independent there if and only if W (¢ 2, -+, ¢n)(x) # 0 for all x

i 1.

Proof. First suppose W (1, pa, -+, ¢n)(x) # 0 for all z in I, and let ¢1,c9,--+ , ¢y
be constants such that

c191() + C2¢2(2) 4 -+ + Cudn(x) =0 (2.9)

for all z in I. Then also

@) (x) + cadhy () + - + ey, (1)
a1 () 4 oy () + - - - 4 cu @y ()

0
0
: (2.10)
o) (@) + 0] @) + o+ et () =0

for all x in I. For a fixed x the equations (2.9), (2.10) are linear homogeneous equa-
tions satisfied by ¢y, co, -+, c,. Hence the matrix representation of the equations
(2.9) and (2.10) is

P1 P2 0 O a1 0
¢ P e Py Cy 0
gnfl) (bgnfl) . (bslnfl) cn 0
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Since the determinant of the coefficients of ¢1,¢o--+ , ¢, in (2.9) and (2.10) is just
W (¢, ¢a, -+, ) (x) which is not zero. Therefore the matrix

b1 ¢2 0
o P o Py
¢>§”:—1) ¢§7:_1) o gb%”:_l)

is non-singular. Hence the above matrix equation has unique solution namely

0
0
. That is ¢; =0, co =0,---,¢, = 0. Therefore ¢c;, =0, co =0,---,¢, =0
0
is the only solution of (2.9) and (2.10). This proves that ¢, ¢o, -« , ¢, are linearly
independent on 1.
Conversely, assume ¢1, ¢ are linearly independent on I. Suppose that there is an
xo in I such that W (¢q, ¢a, -+, ¢n)(zo) = 0. This implies that the system of linear

equations

c1¢1(x0) + capa(x0) + - - - + cndn(o)
19 (o) + 2y (wo) + - - - + cuy, (20)
19 (zo) + cady (z0) + - -+ + ety (w0)

0
0
0

(2.11)

c16"™ (@0) + €268 (w0) + -+ + enghy (o) = 0
has a solution ¢1, s, -+, ¢,, where at least one of these numbers is not zero. Let
c1,Co, "+, Cy be such a solution and consider the function ©¥» = ¢;¢1+cao+- - -+, 0.

Now L(¢) = 0, and from (2.11) we see that
U(z0) =0, ¢'(w9) = 0,---, ¢ V(zg) = 0.

From the Uniqueness theorem (Theorem 2.6), we infer that ¢(x) = 0 for all x in [
and thus

Clﬁb(x) + 02¢2(x> + -+ Cngbn(‘r) =0
for all x in I. But this contradicts the fact that ¢i,¢s--- , ¢, are linearly in-

dependent on I. Thus the superposition that there was a point xy in I such
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that W(¢1, d2,- -+ ,0,) = 0 must be false. We have consequently proved that
W (1,2, ,¢n) # 0 for all zin I. O

Note: The above result and the proof do not depend on the fact that L has constant

coefficients.

Theorem 2.9. (Existence Theorem) Let oy, s, ,, be any n constants, and
let zy be any real number. There exists a solution ¢ of L(y) = 0 on —oo0 < z < o0
satisfying

d(x0) = o, @' (w0) = ag, -+, " V(xp) = (2.12)

Proof. Let ¢1, ¢a,- -+ , ¢y, be any set of n linearly independent solutions of L(y) = 0.
We know that ¢ = c1¢1 + capa + « - - + P, 08 a solution of L(y) = 0.

P(0) = c1¢1(0) + 22 (0) + - + Cudn(0) = 1
¢'(x0) = 1) (w0) + cady(0) + -+ + cadl,(20) =
= a3 (2.13)

¢ (w0) = 16 (w0) + cagy(20) + - - - + Ca @y (w0)

O (o) = 10" (o) + €20y o) + -+ a0V (o) =
Therefore the matrix representation is

1 9252 On (&1 (651
ol O C2 o

(n—1)

P e n o

Since W (o1, ¢a, - -+, dn)(x) # 0, the matrix

b1 o %
2 Py
O I

is non-singular. Hence the above matrix equation has unique solution. Therefore
there exists unique set of constants ¢, co, - - - , ¢, satisfying (2.13). For this choice of
C1,Ca, -+, C, the function ¢ = ¢ +copo+- - -+, ¢, Will be the desired solution. [
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Theorem 2.10. Let ¢y, ¢o, -+ , ¢ be n linearly independent solutions of L(y) = 0

on an interval I. If ¢y, co,- - ,c, are any constants

=11+ oo+ -+ oy (2.14)
s a solution, and every solution may be represented in this form.

Proof. We have already seen that
L(¢) = c1L(¢1) + -+ - 4 caL(n) = 0.
Now, let ¢ be any solution of L(y) = 0, and let xy be in I. Suppose
¢(x0) = ar, ¢/ (z0) = ag, -+, ¢ V(o) = ap.

In the proof of Theorem 2.9 we showed that there exist unique constants ¢y, co, -+ , ¢,
Such that ¥ = ¢1¢1 + o + - - - + ¢, s a solution of L(y) = 0 on [ satisfying
U(xo) = ar, ¥ (z0) = ag, -+, "D (z0) = .

The uniqueness theorem (Theorem 2.6) implies that ¢ = 1, proving that ¢ may be
represented as in (2.14) O

A simple formula exists for the Wronskian, as in the case n = 2.

Theorem 2.11. If ¢q,¢po, -+, ¢, are two solutions of L(y) = 0 on an interval I

containing a point xq, then

W(¢17 ¢27 Uty ¢n)($) = e_al(x_xO) W(¢1a ¢27 e 7¢n>($0) (215)

Proof. Let ¢1, ¢, -+ , ¢, be n solutions of L(y) = 0.
Let W =W (g1, da, -+, bn),

From the definition of W, its derivatives W’ is the sum of n determinants. That
is, W' = Vi + Vo +---+V,, where V,, differ from W only in its k"throw and k" row
of V; is obtained by differentiating k*" row of W. Thus

I ¢ P2 P
/ / . / " " L. 1"
W/ _ gb'l QS'Q gb'n + qb‘l QZ5'2 ¢n 4ot
ngn_l) én—l) L qu(zn_l) qbgn—l) ¢§n—1) . ¢$Ln—1)
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b1 P2 o O
¢ Gy e
gan) ¢§n72) o ¢£lnf2)
oW
The first n — 1 determinants Vi, V5, --- ,V,,_1 are all zero, since they each have
two identical rows. Since ¢, ¢g, - , ¢, are solutions of L(y) = 0, we have
0" = g —axgl" - — .
Therefore,
l} 03 Pn
¢ ¢ o
W' = : : :
(S G | 0 (S ()
=2 Anj T = D A3 = ) An—jOn
j=0 j=0 j=0

The value of this determinant is unchanged if we multiply any row by a number

and add to the last row. Hence

¢1 ¢2 On
| & 9
—adf" gy —agl
¢ P2 O
/ , DY ,
= — ¢.1 ¢.2 (bn =-—a W
¢§n—l) ¢gn—1) o ¢£Ln—1)

Thus W satisfies the first order equation W’ + ;W = 0.

Hence W (z) = ce~**, where c is some constant. Setting x = zy we see that

W (xg) = ce” %0,

or

c = e"W (),

and thus
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W(¢17 ¢27 T 7¢n>(x) = e_al(x_mO)W((bla ¢27 e 7¢7L)(1:0)7

which was to be proved. [l

Corollary 2.12. Let ¢y, pa, -+, ¢, be n solutions of L(y) = 0 on an interval I

containing xog. Then they are linearly independent on I if and only if

W (g1, b2, -+, dn)(w0) # 0.

Proof. The proof is an immediate consequence of Theorem 2.8 and the formula
(2.15). O

Example 2.13. As an illustration of the use of wronskian formula (2.15), we con-
sider the homogeneous equation of order 3 which has a root r; with multiplicity 3.

Its characteristic polynomial is

p(r) = (r—m) i

5 =13 —3rir? + 3rir — 2.

Hence L(y) = y" — 3riy” + 3riy’ — riy

and we have a; = —3r;. We take
G1(x) = €%, do(x) = x T, P3(x) = 2? ¥

and then obtain

o1 L enT L2 e

W (1, d2, ¢3)(x) = | re™® (1 +ryz)en® (22 + ria?)en®
r?en® (2ry +riz)en® (2 4+ drix + riz?)en®

This a little involved to evaluate directly, but using (2.15) with o = 0 we obtain

1 0 O
W(¢1a ¢27 ¢3)(0) A 1 0]|=2
7’% 27’1 2

and hence W (¢y, o, ¢3)(x) = 2317,

2.3 Equations with real constants

Suppose that the constants aq,as,--- ,a, in
L(y) — y(n) —|— aly(n_l) _|_ e _|_ any

are all real numbers. The characteristic polynomial
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p(r)=r"+ar" 4+ +a,
then has all real coeficients. This implies that

p(r) = p(7) (2.16)

for all r, since

p(r) = rm4ar" 4+ +a,
= PHar 440,
= g+ 4a,
= P 4a ™+ ta,

= p(7)

Fron (2.16) it follows that if 7 is a root of p, then so is 7;. Thus the roots of p
whose imaginary parts do not vanish occur in conjugate pairs. A slight extension
of this argument shows that if r; is a root of multiplicity m;, then 7, is a root with
the same multiplicity m;. If there are s distinct roots of p, let us enumerate them
as follows:

T, Fh T, FQ? ) rja F]? 7,2]‘Jr17 T, Ts

where
Tk:a/k—f—iﬂk) (k:1727"'7j;aka 5k_ real;rk%O)

and 79541, -+, 75 are real. Suppose that 7, has multiplicity my. Then we have
2(m1+m2+"'+m]’)+m2j+1+"'+m3 =n.

Corresponding to these roots we have the n linearly independent solutions

rs® ms—1 _rsx

,xet e

(2.17)
of L(y) = 0. Every solution is a linear combination, with constant coefficients, of
these. We now note that if 1 <k <j, 0 < h<my —1,

rox mo—1 _rox

rixT mi—1 _rmx . .
’xe ,...’m e ’...76

yrett o e’ e

k rex _ k (ap+iBr)r _ k_agz . s
e = x"e = x"e*(cos OBrx + 1 sin Gyx),
( ) (2.18)

SL’kGFkx _ mke(ak*iﬂk)x — xkeakw(cos ﬁkx — 7sin ﬁkﬂi)

Thus every solution is a linear combination, with constant coefficients, of the n
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functions

e cos Bz, xe™® cosfx, -, ™ eMT cos B
e sin Byx, xe™® sinfrx, ---, ™ e sin B,
(2.19)
ersx’ :Eersz" e me—lersz'
Each of the functions in (2.19) is a solution of L(y) = 0 since, from (2.18),
h _apx 1 h( _rie TrT
z'e cosﬂkazzix (€™ + e,
(2.20)

1 _
zhe® T sin Bx = Emh(e”@x — e,
i

The solutions in (2.19) are all real-valued, and they are linearly independent. For
suppose we have a linear combination of these functions equal to zero. Let us denote
the terms in this sum which involve

e cos Byx, e sin By

by

cxle™ ™ cos Bz + dae™* sin [z,

where ¢ and d are constants. Using (2.20) we find that we have a linear combi-

nation of the functions (2.17) equal to zero, and the terms involving ze™®  zheT ®

will be )
c+id
—z

he?kx.

Since the functions (2.17) are linearly independent we must have all the coefficients
in this sum equal to zero. In particular
c+1id =0, c—1id =0,

from which it follows that ¢ = 0, d = 0. Thus the solutions (2.19) are linearly

independent.

If ¢ is any real-valued solution of L(y) = 0, then ¢ is a linear combination of
the real solutions (2.19) with real coefficients. Indeed, if we denote the solutions in
(2.19) by ¢4, , ¢, we have

¢: Cl¢1 +62¢2 + - +Cn¢n7

for some constants cq, co, -+, ¢,. Since ¢, ¢a, - - - , P, are all real-valued, we have
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0=1Im ¢ = (Im c1)p1 + (Im c2)po + -+ - + (Im ¢;,) P,

Nd since ¢y, - - - , ¢, are linearly independent we must have
Imcg=Imec=---=Img¢, =0.
This shows that ¢q,cq, -+ , ¢, are all real numbers.

Remark 2.14. If ¢ is a solution of L(y) = 0 which is such that

d(xo) = ay, ¢ (xo) =ag, -, ¢(”_1)(x0) =, (2.21)

where aq, s, - -+, , are real constants, then ¢ is real-valued. One way to see this

is to note that since

¢ is also a solution, and hence so is
¥ = (1/2i)(¢ — ¢) = Im ¢.
But, from (2.21) we see that
U(xg) =0, ¥'(x0) =0, -+, " D(wp) =0,
The uniqueness theorem implies that ¥(x) = 0 for all z, or Im ¢ = 0, showing

that ¢ is real-valued.

Theorem 2.15. Suppose the constants ay,as,--- ,a, in the equation
L(y) — y(n) _|_ aly(n_l) _|_ e _|_ any — O

are all real. There exists a set of n linearly independent real-valued solutions
(2.19), and every real-ralued solution is a linear combination of these with real co-

efficients. If a solution satisfies real initial conditions, it is real-valued.

Example 2.16. Consider the equation y* +y = 0.

The characteristic polynomial is given by p(r) = 7% 4+ 1 and its roots are

1 , 1 , 1 ‘ 1 :
E(1+Z)’ E(l—z), ﬁ(—ljtz), E(—l—z).

Thus every real solution of the given equation has the form

b(z) = e/V? [cl cos(z/V2) + ¢ sin(x/\/i)]
+ e V2 [03 cos(z/V?2) + ¢4 sin(x/\/ﬁ)} :

where c1, ¢9, c3, c4 are real constants.
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Exercise:

1. Find all real-valued solutions of the following equations:
(a) y"+y=0 (b)y" —y=0

() yW—y=0 (d) y® +2y =0

() y —5y" +4y =0

2. Find the solution ¢ of the initial value problem
y"+y=0, y(0)=0y'(0) =1, y"(0) = 0.

3.Determine all real valued solutions of the equations:

(a) y" —iy" +y —iy=0

(b) y" —2iy —y =10

2.4 The non-homogeneous equation of order n

Let b be a continuous function on an interval I, and consider the equation
L(y) — y(n) _|_ aly(n_l) _|_ e + any — b(x)7

where ay,as,- - ,a, are constants. If ¢, is a particular solution of L(y) = b(z)

and 1 is any other solution, then
Ly —tpp) = L(¥) — L(¥p) =b—b=0.

Thus 1) — 1, is a solution of the homogeneous equation L(y) = 0, and this inplies
that any solution ¢ of L(y) = b(z) can be written in the form
V=1, + 191+ cada+ -+ Cun

where 1), is a particular solution of L(y) = b(z), the functions ¢y, ¢, - - , ¢y, are

n linearly independent solutions of L(y) =0, and ¢y, ¢, -+ , ¢, are constants.

To find a particular solution v, we proceed just as in the case n = 2, that is, we
use the variation of constants method. We try to find n functions wuy, us, - - - u, so
that

Yy = U1 + UaPy + - - + U Dy,

is a solution. If
uldr + s+ + b = ),

then
Yy, = ur @ + Uy - - + und),
and if
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i+ upy + -+ ugy, =0,

then
Uy = wi @y + ugdy -+ undy
Thus if u}, ub, -+, ul, satisty

Uydr + uppa + -+ Uy =0
U+ updy oy, =0

: (2.22)
" bl 4 e P =0
"+ upgg T g = b
we see that
Yy = U1Q1 + UaPo + - - - + Up Dy,
Uy, = ur @) + uady + - - + U,
(2.23)

U = wg{" Y +ungl Y o+ g Y
D = w3V + ugs? + - A ung™ + b

Hence L(yy) = w1 L(¢1) + uaL(d2) + - -+ + unL(dn) + b = b,
and indeed v, is a solution of L(y) = b(x). The whole problem is noW reduced

to solving the linear system (2.22) for u),uj, - ,u,,. The determinant of the co-
efficients is just W (g1, ¢o, -+, ¢,), which is never zero when ¢y, - , ¢, ae linearly
independent solutions of L(y) = 0. Therefore there are unique functions uf, - - ,ul,,

satisfying (2.22). It is easy to see that solutions are given by
%% b
k(x) (:C> , (k,: 1’2"” ’n)
W(¢la ¢27 Tty ¢n)(x)
where W, is the determinant obtained from W (¢y, -, ¢,,) by replacing the k—th
column (that is ¢x, ¢}, -, ](€n71)) by 0,0,---,0,1.

up () =

If x4 is any point in I we may take for u; the function given by

b(t) 1.
T ¢1’¢27 Y dt, (k=1,2,--- n)
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The particular solution 1, now takes the form

(t
Zm /W ¢1,¢2, 72%)@) dt. (2.24)

Theorem 2.17. Let b be continuous on an interval I, and let ¢q,--- , ¢, ben linearly
independent solutions of L(y) = 0 on I. Ewvery solution ¢ of L(y) = b(x) can be

written as
Y=Yy + 191+ oy + -+ Ccpdy
where 1, is a particular solution of L(y) = b(z) and ¢y, ca, -+ , ¢, are constants.

Every such 1 is a solution of L(y) = b(x). A particular solution is given by (2.24).

Note: It is clear that the particular solution v, given by (2.24) satisfies
Upl(z0) = Wplwo) = - = ¥"(zo) = 0.
Example 2.18. Consider the equation

y'+y' +y +y=1 (2.25)
which satisfies
psin(0) =0, ¥,(0) =1, ¥,(0)=0. (2.26)
The homogeneous equation is
y'+y +y +y=0, (2.27)

and the characteristic polynomial corresponding to it is
p(r)y=rd+r?+r+1.
The roots of p are i, —i, —1. Since we are interested in a solution satisfying real
initial conditions we take for independent solutions of (2.27)

¢1(x) = cosz, ¢o(x) =sinz, ¢3(x)=ec".

To obtain a particular solution of (2.25) of the form wu; ¢ + uspo + uzps, we must
solve the following equations for ), uf, uj :
uy 1 + uys + uses = 0
uy ¢ + upPy + uzdy = 0
Wy + e+ = 1,

vhich in this case reduce to
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(cos x)uy + (sinz)uy + e “uy =0
(—sinz)u) + (cosx)uy — e "uy =0

(—cosx)uj — (sinz)uly + e “uy = 1.

The determinant of the coefficients is

-

CcoS T sinx e

W (¢, o, ¢3)(x) = | —sinx cosz —e @

—cosx —sinx e ®

Using (2.15) we have
W (g1, b2, ¢3)(x) = e W (o1, 2, $3)(0),

since a; = 1 in this case. Now

1 0 1
W(pr,¢2,903)(0)={ 0 1 —1|=2,
-1 0 1
and thus W (o1, ¢o, ¢3)(z) = 2¢~".
Solving (2.28) for u; we find that
0 sinz e*
! 1 x _ 1 .
ul(x):§e 0 coszx —e @ =3 (cosz + sinz).

1 —sinx e*

(cosz —sinx),

e”.

NN =

Integrating (2.29),(2.30),(2.31), we obtain as choices u;, ug, us :

1

u(z) = 5 (cosz —sinx),
1

ug(z) = §(sin x + cosx),
1

us(x) = 5 e”.
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Therefore a particular solution of (2.25) is given by

u(x)dr(x) + ua(2)do(x) + us(x)ds(x) 1

1
= 3 (cosx — sinx) cosx+§(sinx+cosx) sinx—|—§ e’
1.

The most general solution ¢ of (2.25) is of the form

Y(x) =14 cicosx + cysinx + cze™*,

where cq, c9, c3 are constants. We must choose these constants so that the condi-
tions (2.26) are valid. This leads to the following equations for ¢y, co, c3 :
ci+c=-1, co—c3=1, ¢ —c3=0,
which have the unique solution
1 1 1
a=-3 =3 :
Therefore the solution of our problem is given by
P(xr) =14+ %(Sinx —cosx —e ).
The solution corresponding to that given in (2.24), with zo = 0, is easily seen to
be
Yp(x) =1— %(cosa: +sinz + e %),

and this satisfies

Up(0) =0, ¥(0) =0, ¥/(0)=0.

Exercise:

1. Find all solutions of the following equations:
(@) y" —y == (b) y" — 8y = iz
(c) y + 16y = cosx (d) y™® —y = cosx

2.5 A special method for solving the non-homogeneous
equation

Although the variation of constants method yields a solution of the non-homogeneous

equation it sometimes requires more labor than necessary. We now give a method,

which often faster, of solving the non-homogeneous equation L(y) = b(x) where b is

a solution of some homogeneous equation M (y) = 0 with conslant coefficients. Thus
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b(x) must be a sum of terms of the type P(x) e, where P is a polynomial and a is

a constant.

Suppose L and M have constant coefficients, and have orders n and m respectively.
If ¢ is a solution of L(y) = b(z), and M (b) = 0, then clearly
M(L(¥)) = M(b) = 0.

This shows that 1 is a solution of a homogeneous equation M(L(y)) = 0 with
constant coefficients of order m +n. Thus ¢ can be written as a linear combination
with constant coefficients of order m+n linearly independent solutions of M (L(y)) =
0. Not every linear combination will be a solution of L(y) = b(x) however. Thus,
to find out what conditions must be satisfied by the constants, we substitute back

into L(y) = b(x). This always leads to a determination of a set of coefficients;

Example 2.19. Consider the equation
L{y) =y" =3y + 2y = 2*.

2 2

Since z* is a solution of M (y) =y = 0, we see that every solution v of L(y) = x

is a solution of
M(L(y)) = y® =3y + 2y = 0.

The characteristic polynomial of this equation is r3(r? — 3r + 2) which is just the
product of the characteristic polynomials for L and M. The roots are 0,0,0,1,2
and hence ¥ must have the form

P(T) = co + 1T + c1? + c3e” + cxe®

We notice immediately that cse” 4+ c5€** is just a solution of L(y) = 0. Since we
are interested only in a particular solution 1, of L(y) = 2%, we can assume 1), has
the form

_ 2
Yy = c1 + o + c3a”.

The problem is to determine the constants c,, ¢1, ¢; so that L(¢,) = z?. Computing
we find
U (7) = c1 + 20w, Py(x) = 202,

and
L) = (2¢2 — 3c1 + 2¢) + (—6c2 + 2¢1)x + 2092% = 22

Thus equating coefficients of 22, x and constants we have

200 =1, —6c+2c1 =0 and 2cy —3c; +2c5=0
1 3 7
Therefore ¢y = 3 =g =
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1
Hence ¢, (z) = 1(7 + 62 + 22%) is a particular solution of L(y) = 22.

We call this method the annihilator method, since to solve L(y) = b(x), we fnd
an M which makes M (b) = 0, that is, annihilates b. Once M has been found the
problem becomes algebraic in nature, no integrations being necessary. Actually, as
we have seen from the cxample, all we require is the characteristic polynomial ¢q of M.
The following is a table of some functions together with charactecristic polynomials

of annihilators. In this table a is onstant, and & is a non-ncgative integer.

Function Characteristic Polynomial of an Annihilator
(a) e’ r—a
(b) ket (r —a)k+?
(c) sinaz, cosax (a — real) r? + a?
(d) | 2% sinaz, 2* cosaz (a — real) (r? + a?)*+t

Let us consider another example of the annihilator method.

Example 2.20. Consider the equation
Ly)=y"+y" +y +y=1

Since 1 is a solution of M(y) = v’ = 0, we see that every solution ¢ of L(y) =1

is a solution of
M(L(y)) _ <y/// + y// + y/ + y)/ _ y(4) + y/// + y// + y/ —0.
The characteristic polynomial of this equation is
pr)=r*+r3+r2+r=r(+r2+r+1),
which is just the product of the characteristic polynomials for L and M. The roots
are with roots 0, —1, 4, —i. and hence ) must have the form
(x) =co+ e + cacosx + cgsine

We notice immediately that ¢;e™" 4¢3 cos 4¢3 sin x is just a solution of L(y) = 0.

Since we are interested only in a particular solution ¢, of L(y) = z?, we can assume

Y, has the form
@ZJp = Cp-

The problem is to determine the constants ¢q so that L(¢,) = 1. Computing we
find that co = 1. For, since L(v,) = 1, ¥y’ + ) + ) + ¢, = 1.

Hence 1, = 1 is a particular solution of L(y) = 1.

Thus the general solution is ¢ (x) =14 ¢je™* + cg cos T + ¢ sin .
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Exercise:

1. Using the annihilator method find a particular solution of each of the following

equations:
(a) y" +4y = cosx (b) y" + 4y = sin 2z
(c) y" 4 9y = x?e™ (d) ' +y = xe” cos 2x

2.6 Algebra of constant coefficient operators

In order to justify the annihilator method we study the algebra of constant cocficient
operators a little more carefully. For the type of equation we have in mind
aoy™ + ary" Y + -+ + ay = b(x),

where ay # 0,aq,--- ,a, are constants, and b is a sum of products of polynomials
and exponentials, every solution 1 has all derivatives on —oco < x < oo. This follows

from the fact that ¢ has n derivatives there, and

P = p— L= _ . dnyy
Qo Qo ’

where b has all derivatives on —oco < x < 0.

All the operators we now define will be assumed to be defined on the set of all
functions ¢ on —oo < x < oo which have all derivatives there. Let L and M denote
the operators given by

L(¢) = ag¢"™ + a1V + -+ + and,
M(¢) = bgd™ + b1V + - + by,

where ag,aq,- - ,a,,bo, b1, , b, are constants, with ag # 0,by # 0. It will be
convenient in what follows to consider ag, by which are not necessarily 1. The char-
acteristic polynomials of L and M are thus

p(r) = agr™ + a1r™ ! + a,,

and
q(r) = bor™ + byr™ o 4 by,

respectively. We define the sum L + M to be the operator given by
(L+ M)(¢) = L(¢) + M(¢),

and the product M L to be the operator given by
(M L)(¢) = M(L(0))-

42



If ¢ is a constant we define a L by
(a L)(¢) = a(L(0)).

We note that L + M ,M L and oL are all linear differential operators with constant
coefficients.

Two operators L and M are said to be equal if
L(¢) = M(¢)

for all ¢ which have an infinite number of derivatives on —oco < x < 0o. Suppose
L, M have characteristic polynomials p, ¢ respectively. Since e, for any constant r,

has an infinite number of derivatives on —oo < x < 0o, we see that if L = M then
L(e™) =p(r)e™ = M(e"™) = q(r)e"™,

and hence p(r) = ¢(r) for all . This implies that m = n, and ax, = by, k =
0,0,--+-,n. Thus L = M if and only if L and M have the same order and the same

coefficients, or, what is the same, if and only if p = q.

If D is the differentiation operator D(¢) = 0, we define D?> = DD, and successively
DY =DD* 1Y (k=2,3,---).

For completeness we define DY by D°(¢) = ¢, but do not usually write it explicitly.
If a is a constant we understand by a operating on a function ¢ just multiplication
by a. Thus

a(¢) = (o D°)(¢) = ag.
Now, using our definitions, it is clear that
L=ayD"+a; D" '+ +a,,

and
M =byD™ +b;D™ .. 4+ b,,.

Theorem 2.21. The correspondence which associates with each
L=aqD"+a; D" '+ +a,

its characteristic polynomaial p given by
p(r) =agr™ + ayr™ '+ +a,

1s a one-to-one Correspondence between all linear differential operators with Con-
stant coefficients and all polynomials. If L, M are associated with p,q respectively,
then L+ M 1s associated with p+ q, M L is associated with pq and oL is associated

with ap (o a constant).
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Proof. We have already seen that the correspondence is one-to-one since L = M if
and only if p = ¢. The remainder of the theorem can be shown directly or by noting
that

(L+ M)(e™) = L(e™) + M(e"™) = [p(r) + q(r)] (™),
(ML)(e™) = M(L(e™)) = M(p(r)(e™)) = p(r)M(e"™) = p(r)q(r)(e™),
(aL)(e™) = a(L(e™)) = ap(r)(e"™)
This result implies that the algebraic properties of the constant coefficient operators
are the same as those of the polynomials. For example, since LM and ML both
have the characteristic polynomial pg. we have LM = ML. 1f the roots of p are
71,72, , Ty, then

p(r) = ao(r —ri) - (r —ra),
and since the operator ag(D —ry) -+ (D —1,) has p as characteristic polynomial, we

must have
L=ay(D—ry) (D —rp).

This gives a factorization of L into a product of constant coefficient operators of the

first order.

Remark 2.22. If L and M are not constant coefficient operators, then it may not
be true that LM = M L. For example, if L(¢)(x) = ¢'(x), M(¢)(z) = x¢(x), then

(LM — ML)(¢)(x) = o(x).

We apply Theorem (2.21) to give a justification of the annilhilator method.

Theorem 2.23. Consider the equation with constant coefficients
L(y) = P(x) e**, (2.32)
where P 1is the polynomial given by
P(x) = boz™ + bya™ "+ -+ by, (by £0) (2.33)

Suppose a is a root of the characteristic polymomial p of L of multiplicity j. Then
there is a unique solution 1 of (2.32) of lhe form
() = 2 (cox™ + crz™ 1+ -+ ) €9,

where cg, ¢y, -+, cm are constants determined by the annihilator method.
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Proof. The proof makes use of the formula

k(k—1)

L(x¥e™) = | p(r)a* + kp/'(r)z" ' + X

(P2 4+ kpEY () 2 4 p® (7’)} e
(2.34)
The coefficient of PWa*~! in the bracket is the binomial coefficient
() = kY
l (k=011!

Thus we may write
k
L(xkem) _ {Z (llc) pl(r) xk—l} erT
1=0
where we understand 0! = 1.

An annihilator of the right side of (2.32) is M = (D — a)™"!, with characteristic

polynomial given by ¢(r) = (r — a)™.

Since a is a root of p with multiplicity j, it is a root of pg with multiplicity j+m+1.
Thus solutions of M L(y) = 0 are of the form
Y(x) = (cerd ™™ + 1?4+ i) €7 + o),

where L(¢) = 0, and ¢ involves exponentials of the form e, with s a root of p and

s # a. Since a is a root of p with multiplicity j, we have that

i1 2 z
(Cm127 ™"+ Cpp2®? ™2+ -+ Oy ) €°

is also a solution of L(y) = 0. Consequently we see that there is a solution 1 of
(2.32) having the form

V() = 2/ (coz™ + c1a™ - e )e™ (2.35)

where ¢g, c1,- -+ , ¢, are constants.

We now show that these constants are uniquely determined by the requirement that
¥ satisfy (2.32). Substituting (2.35) into L we obtain

L) = coL(@"e™) + e, L@ 'e™) 4 - 4 e Liade™).  (236)

The terms in this sum can be computed using (2.34). We note that
pa) =p(@) == pi (@) =0, p #£0,

since a is a root of p with multiplicity j. Thus, if £ > j,
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L(xkeax) = [(kﬁ_]) p(]) (a[)xkfj + (k—‘];—l) p(j+1) (a)xkij*l + e +p(k) (a):| eax‘
Then we have

L(aitmesr) = [(j—l—m) D ()™ + (j+m) Pt (g)z™ ! +,..+p(j+m)(a)] cax

m m—1

L(xj+m_1e‘w) _ [(j+m—1) p(j)(a>xm—1 + (ji,l’i;l) p(j+1)<a>$m—2 R +p(j+m—1)(a)] 4T

m—1

L(zie™) = () p¥(a)e™.
Using these computations in (2.36) and noting that (2.33), we see that v satisfies
(2.32) if and only if

o (J—;m) p(j)(a) = by,

co (j+wlt) p(j+1)(a) + ¢ (j:f:l) p(j)(a) = by,

m—

Cop(j+m) (a) + Clp(j+m_1) (a) + e _|_ Cmp(]) (a) — bm

This is a set of m + 1 linear equations for the constants ¢y, ¢y, - - -, ¢,. They have a
unique solution, which can be obtained by solving the equations in succession since

p'j)(a) # 0. Alternately, we see that the determinant of the coefficients is just
em (e - m+1
() ) -1 @] A 0.

This completes the proof of the theorem. n

The Justification of the annihilator method when the right side of L(y) = b(x) is
the sum of terms of the form P(x)e® can be reduced to Theorem 2.23, by noting
that if 11, 99 satisfy

L<¢1) = by, L(¢2) = by,
respectively, then ¢, + 15 satisfies
L(th1 + 1hg) = by + ba.
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Chapter 3

Linear equations with variable

coeflicients

3.1 Introduction

A linear differential equation of order n with variable coefficients is an equation of
the form
ag(2)y"™ + ai(2)y™ Y + -+ an(2)y = b(2),

where ag,aq,--- ,a,,b are complex-valued functions on some real interval /. Points
where ag(z) = 0 are called singular points, and often the equation requires special
consideration at such points. Therefore in this chapter we assume that ag(x) # 0
on I. By dividing by ag, We can obtain an equation of the same form, but with ag

replaced by the constant 1. Thus we consider the equation
v+ ar(2)y" Y+ an(a)y = b(x) (3.1)

As in the case when ay,as,- - ,a,, are constants we designate the left side of (3.1)
by L(y). Thus

L(y) =y + a1 (x)y™ D + -+ a,(z)y 3.2)

(
and (3.1) becomes simply L(y) = b(z). If b(z) = 0 for all x on I we say L(y) = 01is a
homogeneous equation, whereas if b(x) # 0 for some z in I, the equation L(y) = b(x

is called a non-homogeneous equation.

We give a meaning to L itself as an operator which takes each function ¢, which has
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n derivatives on I, into the function L(¢) on I whose value at x is given by
L(¢)(x) = ¢"(2) + 16" V() + - + an().

Thus a solution of (3.1) on I is a function ¢ on I which has n derivatives there, and

which satisfies L(¢) = 0.

We assume that the complex-valued functions ay,--- ,a,,b are continuous on some

real interval 1. and L(y) will always denote the expresion (3.2).

3.2 Initial value problem for the homogeneous equa-

tion
Theorem 3.1. (Existence Thorem) Let ay,--- ,a, be continuous functions on an
interval I containing the point zy. If aq, a9, - -+ , oy, are any n constants, there erists

a solution ¢ of
L(y) = y™ + a1 (z)y™ D + -+ an(z)y =0

on [ satisfying
d(z0) = o, ¢(m0) =z, -+, "V (mg) = .

We stress two things about this theorem :
(i) the solution exists on the entire interval I where aj,as,--- ,a, are continuous,
and

(ii) every initial value problem has a solution.

Neither of these results may be true if the coefficient of y™ vanishes somewhere in

1.

For example, consider the equation
zy' +y =0,

whose coefficients are continuous for all real x. This equation and the initial

condition y(1) = 1 has the solution ¢;, where

1
But this solution exists only for 0 < x < co. Also, if ¢ is any solution, then
xo(z) = ¢,

where ¢ is some constant. Thus only the trivial solution (¢ = 0) exists at the

origin, which implies that the only initial value problem

48



vy +y=0, y(0)=a,
which has a solution is the one for which o = 0.

Just as in the case where the coefficients a;, (j = 1,---,n) are constants, the
uniqueness of the solution ¢ given in Theorern 3.1 is demonstrated with the aid of

an estimate for
2 / 2 (n—1) 2]1/2
o) = |[o(@)” +1¢/@) + -+ o D@)]
Remark 3.2. If [ is a closed bounded interval, that is, of the form a < x < b with

a, b real, and if the a; are continuous on I, then there always exiut finite constants
by such that |a;(x)| < b;, on I.

Theorem 3.3. Let by,--- ,b,, be non-negative constants such that for all x in I.
ja;(x)] <b; . (G=12--,n)

and define k by
k=1+0b+0bys+---+b,.

If xo is a point in I, and ¢ is a solution of L(y) =0 on I, then
[g(o)|| e M=l < lg(2)]| < [ld(xo)ll o=l (3.3)

for all x in I.

Proof. Since L(¢) = 0 we have
" = —a(2)p" V(@) — - — an(@)o(2),

and therefore

6] = ai(@)e" V(@) + -+ an(w)g()]

< ay (@)D ()] + cdots + |an(z)]|6(x)|
< byl V()] + cdots + by| ()]
Hence
10| < by |V ()| + cdots + by| ()] (3.4)

49



Now letting u(z) = ||¢(z)||* for 2 € I. Then

IA

IN IA

IN

= |¢><x)\2 + ¢ @)+ + |¢<"*”<:c>|2

()¢ (z) + - - - + ¢" D (2)p(n=D(2), since |z|* = 2Z
()¢ (x) + - - + ¢V (2)pln=D ()

cb( )¢ (2) + ¢/ (x)d(x) + ¢ (2)¢" (x) + ¢" ()¢ (x)

s ¢ (@)D (2) + 6D () ()
ch( )¢ (x) + ¢ (2)(x) + ¢ ()¢ (x) + ¢ (x) ()

+ ¢ (2)o D (2) + "D (2) 6 (2))|

| ()¢ ()| + | (2) ()| + ¢/ (2)" ()] + ¢ ()& ()]

A [ (@)D ()] + [ (1)) ()
|¢(w)||¢’( )+ 16 (@)]o(2)| + 1 ()19 ()] + ¢ (2)[|¢/ ()]
+oe [0 (@) 60D (@) + [ ()] ()]
[p(2)||¢'(2)| + ¢ (2)]|o(2)| + ¢ (2)]|¢" ()] + 8" (x)|¢' (x)]
+o [0 (@) oM D (@)| + [0V ()6 (2))]
2|¢()[1¢' ()] + 2| ()] |¢" (x)] + - - + 2" V()] ¢! ()]
2 [p(2)[|¢' (@) + 2 [¢"(2)[|¢" (z)| + - - - +
20"V ()| (Jar (2)]|¢" "V (@)] + lag(2) |67 2 (@)] + - - + |an(z)][¢(2)])
(14 [bu)lo(2)]* + 2+ "IN ()] + - +
(2+|bl\)|<b(”*2)(a:)l2+(1+2|b1\+|bz\+ +|bn|)\¢("*“(fc>!2, using(3.4)
201+ [by] + [bo| + - - + [ba)|@(2) [ + 2(1 + [ba] + [bo] + - - - + [ba]) ¢ ()]
A+ 201 b |+ [bo| + - A [Ba]) " ()P
+2(1+ [br] + [ba] + -+ + ba]) 0" ()
21+ [by| + [bo| + -+ + bal) (I6(2)* + &' (@) + - - + |07 D (z)]?)
2 ku(z), where k =14 |by| + |ba| + -+ + |ba]

R

T

8

Therefore |u/(z)| <2 k u(z). That is —2 k u(x) < u/(z) < 2 k u(x).
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Take u/(z) <2 k u(z). Then

w(z) —2kulx) < 0
ek (2) + u(x)(—2ke™**) < 0
(6—2kz U(ZE)), S 0

Let g < z

e kT (x) — e y(z) < 0
e () < e 20 ()
u(x) < e2EmT0) gy (g)
lo@)1* < llg(a)|* e
lo@) < llo(ao)|| =)

Similarly taking —2 k u(z) < u'(z) we can show that ||¢(z¢)|| e @20 < ||o(z)]|.
Hence
lo(zo)ll ™) < [|g(2)]| < [lo (o)l €™ when 2o < 2 (3-5)

In a similar way, we can show that
lp(zo)| e < lg(2)]| < [lp(wo)|| €™~ when & < (3.6)

Hence from (3.5) and (3.6), we have
l¢(@o)ll ===l < [lp(a)]| < [lp(xo)]| e*le=!
where k =1+ |by| + |ba| + - - - + |bn|. Hence the theorem. O

Theorem 3.4. (Uniqueness Theorem) Let oy, am, -+, ay, be any n constants, and
let ¢ be any real number. On any interval I containing x, there exists at most one

solution ¢ of L(y) = 0 on [ satisfying
d(z0) = o1, ¢(m0) =z, -+, "V (mg) = .

Proof. Suppose ¢ and 1 are two solutions of the initial value problem L(y) =

0, y(xo) = a1, ¥(x0) = az, -, y™Y(z) = a, on I. Then we have to
prove that ¢(x) = () for all z. Let x = ¢(z) — ¥ (x). Even though the functions
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a; are continuous on I they need not be bounded there. However, Let x be any
point on I other than z(y. Let J be any closed bounded interval in / which contains
x,xo. On this interval the functions a; are bounded. That is |a;(x)| < b; on J for
j=12-- n

Then L(x) = L(¢) — L(¥) = 0, and x(z0) = 0, X'(zo) =0, -+, x""D(z) = 0.
Then ||x(zo)|| = 0, and applying the inequality (3.3) to x we see that ||x(z)|| =0
for all z in J. This implies that x(x) = 0 for all z in J. Since x was chosen to be

any point in I other than z,, we have ¢(z) = ¢(z) for all z in 1. O

3.3 Solution of the homogeneous equation

If ¢1,¢9, -, ¢ are any m solutions of the n—th order equation L(y) = 0 on an
interval I, and ¢q,--- , ¢, are any m constants, then

L(cigr + -+ cm®m = a1 L(o1 + - - - + i L(Pm),

which implies that c;¢; + - -+ + ¢ is also a solution. In words, any linear
combination of solutions is again a solution. The trivial solution is the function

which is identically zero on 1.

As in the case of an L with constant coefficients, every solution of L(y) = 0 is a
linear combination of any n linearly independent solutions. Recall that n functions
¢1,- -+, ¢, defined on an interval I are said to be linearly independent if the only

constants ¢y, - -+ , ¢, such that
Cl¢l(x) +o At Cn¢n(x) =0
for all x in I are the constants
cpo=c=--4+¢,=0.

we construct n linearly independent solutions, and show that every solution is a
linear combination of these. we show that every solution is a linear combination of

any n linearly independent solutions.

Theorem 3.5. There exist n linearly independent solutions of L(y) =0 on I.

Proof. Let us consider the initial value problem
Liy) = y™ +ay™ D+ +apy = 0

with initial condition
y(l'o) = 17 y’(xo) = 07 T y(n_l)(z) =0
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Then by existence and uniqueness theorem, the above initial value problem has a

unique solution. Let it be ¢;. Then
L(¢1) =0, d1() = 1, (w0) =0, -, ¢" () =0.
Now let us consider another initial value problem
L(y) = y™ +ay" V4 +a,y =0
with initial condition

y(zo) =0, Y/(zo) =1, -+, y" V(xy=0

Then again by existence and uniqueness theorem, the above initial value problem

has a unique solution. Let it be ¢5. Then

L<¢2) = 07 (bg(l’o) = 07 ¢,2(£E0) = 17 Tty gnil)(w) = 0.
Continuing in this manner after n steps we get n functions ¢, ¢o, - - - , ¢, solutions

of L(y) = 0 satisfying

ll)( ) 1 forallz‘:le’...’n

: 3.7
oV V(we) =0 forall j=1,2,-,n, j#i 5D
Now let us show that {¢1, ¢, - , P, } is linearly independent.
Suppose there are constants ¢y, co, - - - , ¢, such that c1¢1 + - + ¢, =0
for all x in I. Differentiating we see that
0161() + Caha(5) + -+ + Cnu() = 0 (3.8)
for all z in 1. Then also
ady(z) + cadh(x) + -+ - + cndy(x) =0
16 (x) + 2y (x) + - -+ + cuyy(x) = 0
: (3.9)

gy (@) + e08 V@) 4+ b () =0

for all x in I. In particular, the equations (3.8) and (3. ) must hold at zy. Putting
T = xo in (3.8) we find, using (3.7), that ¢; (1) +¢2 (0 ) ~+4¢, (0) =0, 0r ¢, =0.
Putting z = x( in the equations (3.9) we obtain ¢; = ¢3 -4 ¢, = 0 and thus the
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solutions ¢, - - - , ¢, are linearly independent. [l

Theorem 3.6. Let ¢q,--- , ¢, be the n solutions of L(y) =0 on I satisfying (3.7).
If ¢ is any solution of L(y) = 0 on I, there are n constants c1,--- , ¢, such that
¢ =c1¢1+ -+ CaPn.

Proof. Let ¢ be a solution of L(y) = 0on I. Let ¢(x0) = a1, ¢'(20) = ag -+, "V (x0) =

Q.

Consider the function
Y =a1¢1 + aar + -+ apdp.

Then L(v) = aqnL(¢1) + aoL(p2) + -+ + a, L(¢,) = 0 and so ¢ is a solution of
L(y) = 0 and clearly
U(x0) = 1 ¢1(20) + aad2(o) + -+ + andn(xo) = au,
since ¢1(zg) =1, ¢a(x9) =0, -+, ¢n(x) = 0.
Similarly using the other relations in (3.7) we see that
U(x0) = a1, ¥ (w0) = ag, -+, P D (w) = ap.

Thus psi is a solution of L(y) = 0 having the same initial conditions at x as ¢.

By uniqueness Theorem, we must have ¢ = 1, that is
¢ =191 + Qada + - + Qpn.

We have proved the theorem with constants ¢; = aq,co = an, -+, ¢, = Q. O

Remark 3.7. A set of functions which has the property that, if ¢1, ¢, belong to
the set, and ¢y, co are any two constants, then c;¢, + co2 belongs to the set also is
called a linear space of functions. We have just seen that the set of all solutions of
L(y) = 0 on an interval I is a linear space of functions. If a linear space of functions
contains n functions ¢, ¢, - - , ¢,, which are linearly independent and such that
every function in the space can be represented as a linear combination of these, then
¢1,- -+, Op is called a basis for the linear space, and the dimension of the linear space
is the integer n. Then the functions ¢y, - - , ¢, satisfying the initial conditions (3.7)
form a basis for the solutions of L(y) = 0 on I, and this linear space of functions

has dimension n.
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3.4 The Wronskian and linearly independent

In order to show that any set of n linearly independent solutions of L(y) = 0 can serve
as a basis for the solutions of L(y) = 0, we consider the Wronskian W (¢1, ¢o, - - - , ¢5)

of any n solutions ¢, ¢o, -+ , Pp.

Definition 3.8. The wronskian W (¢q, ¢2, - - - , ¢,,) of n functions ¢y, ¢o, - - - , ¢y, hav-

ing n — 1 derivatives on an interval [ is defined to be the determinant function

Cbl e ¢n
W(¢17¢27'” 7¢n): ¢:1 ¢n
Cbgn'_l) . ¢£Ln_1)

Theorem 3.9. If ¢1, o, , P are solutions of L(y) = 0 on an interval I, then
they are linearly independent there if and only if W (¢ 2, -+, ¢n)(x) # 0 for all x

i 1.

Proof. First suppose W (o1, ¢a, -+, ¢n)(x) # 0 for all z in I, and let ¢1,¢9,-- ¢,

be constants such that

c101(x) + capo(x) + -+ + cpdp(x) =0 (3.10)

for all z in I. Then also

¢ (x) + cadhy () + -+ ey, (1)
@i () + ey (x) 4 - - - + ety ()

0
0

: (3.11)
gy (@) + e V(@) o+ eV (@) = 0

for all  in I. For a fixed « the equations (3.10), (3.11) are linear homogeneous equa-
tions satisfied by ¢y, co, -+, c,. Hence the matrix representation of the equations

(3.10) and (3.11) is
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o1 o 1 0

s - o ||el] [o
gnfl) <bgnfl) . <bglnfl) cn 0
Since the determinant of the coefficients of ¢1,¢o -, ¢, in (3.10) and (3.11) is just

W (1, 2, -, dn)(x) which is not zero. Therefore the matrix

¢1 G2 0 O
¢ o SR
(bgn:_n gzbé”z_l) o g257(;;_1)

is non-singular. Hence the above matrix equation has unique solution namely

0
. Thatisc; =0, cg =0,---,¢, = 0. Therefore ¢c; =0, co =0,---,¢, =01is
0
the only solution of (3.10) and (3.11). This proves that ¢y, ¢, -+ , ¢, are linearly
independent on I.
Conversely, assume ¢1, ¢ are linearly independent on I. Suppose that there is an

xo in I such that W (1, ¢o, -+, én)(xo) = 0. This implies that the system of linear

equations

c1¢1(zo) + c2d2(wo) + - + crn(0) =0

19 (o) + 25 (20) + -+ + cadpy(w9) = 0
19 (o) + szb’z/(l‘o) + ot el () = 0 (3.12)

16y (o) + €205V (o) + -+ + cu g (wo) = 0
has a solution ¢1, s, -, ¢,, where at least one of these numbers is not zero. Let
c1,Co, -+, Cy be such a solution and consider the function ¥ = ¢;¢1+copo+- - -+,

Now L(1) = 0, and from (3.11) we see that
77b<x0) = Oa 77bl($0) = 07 s 7,¢(n71)(1.0) =0.

From the Uniqueness theorem (Theorem 3.4), we infer that ¢(x) = 0 for all x in [
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and thus

1 o(x) + codo(x) + -+ + cpdp(x) =0
for all x in I. But this contradicts the fact that ¢, ¢s--- , ¢, are linearly in-
dependent on I. Thus the superposition that there was a point zo in [ such

that W (1, ¢2,- - ,¢,) = 0 must be false. We have consequently proved that
W (1,2, ,¢n) # 0 for all zin I. [

Theorem 3.10. Let ¢1, ¢o, - , ¢y be n linearly independent solutions of L(y) = 0
on an interval I. If ¢ is any solution of L(y) =0 on I, it can be represented in the
form

¢:Cl¢1+"'+cn¢m

where ¢y, co, - -+ , ¢, are constants. Thus any set of n linearly independent solutions
of L(y) = 0 on I is a basis for tlhe solutions of L(y) =0 on I.

Proof. Let xq be a point in I, and suppose
d(x0) = o, ¢ (w0) = @z, -+, " V() = an.
We show that there exist unique constants ¢y, ¢, - -+ , ¢, such that
Y=c1p1+ -+ cadn
is a solution of L(y) = 0 satisfying
(o) = o, P (20) = g, -+, "V (20) = .
By the uniqueness result Theorem 3.4 we then have ¢ = 1, or

¢ =c101+ -+ cudp.

The initisl conditions for ¢ are equivalent to the following equations for ¢1,--- ¢, :

Cl¢1(x0) + -+ Cn¢n<x0) = 01
197 (xo) + -+ + @, (z0) = (3.13)
160" (o) + -+ + € (wo) =

This is a set of n linear equations for ¢y, - - - , ¢,. The determinant of the coefficients
is W(¢1, -+, dn)(x), which is not zero since ¢y, - , ¢, are linearly independent
(Theorem 3.9). Therefore there is a unique solution ¢, --- , ¢, of the equations
(3.13), and this completes the proof. ]

57



Theorem 3.11. If ¢, ¢a, -+ , ¢, are two solutions of L(y) = 0 on an interval I

containing a point xq, then

T

W1, ¢z, -+, ¢n)(x) = exp —/al(t) dt| Wy, da, -+ dn)(w0).  (3.14)

zo

Proof. We first prove the result for the case n = 2 and then give a proof which is

valid for general n.
Case 1: n=2
In this case W = ¢1¢,, — ¢ ¢2, and therefore

W' = ¢\ + d1dy — &2 — ¢
= ¢1y — P2

Let ¢1, @2 be two solutions of L(y) = 0. Then we have
O + ar1dy + asdy = 0 and ¢ + a1dhy + aspy =0

Thus

W’(¢17 ¢2) = ¢1(—@1¢/2 - G2¢2) - (—CL1¢/1 - az¢1)¢2)
= —Wi(g1dy — ¢2)
= —a1W(¢1,¢2)

we see that W (1, ¢2) satisfies the linear first order equation y' + a1 (x)y = 0.
That is W/ 4+ a,W = 0.

T

Hence W(¢1, ¢2)(z) = cexp |— [ ai(t) dt] , where ¢ is some constant. By putting

zo
xr = xo we obtain ¢ = W (¢, ¢2)(x¢),and thus

x

W (g1, ¢2)(7) = exp [— [ a(t) dt] W (1, d2)(z0).

o
Case 2: For general n
Let ¢1, ¢a, - -+, ¢n be n solutions of L(y) = 0. Let W = W (1, pa, -+, ¢p). From
the definition of W, its derivatives W’ is the sum of n determinants. That is,

W' =Vi+Va+---+V,, where V} differ from W only in its k—throw and k—th row
of Vj is obtained by differentiating k—th row of W. Thus
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¢ ¢y e $1 ¢ n
of Py P ol I
we=| O I R
¢§n71) gnfl) o ¢£ln71) ¢§n71) <bénfl) . <églnfl)
¢1 G2 O
¢ P Py
n—2 n—2 n—2
L
o
The first n — 1 determinants V;, V5,--- ,V,,_1 are all zero, since they each have
two identical rows. Since ¢1, ¢o, - - , ¢, are solutions of L(y) = 0, we have
925@(”) = —a1¢§”_1) - a2¢§n_2) — = andr.
Therefore,
¢1 ®2 Pn
9 P O
W' = : : :
=) G | () =3 ()
DD L ) D e D DY
j=0 7=0 3=0

The value of this determinant is unchanged if we multiply any row by a number

and add to the last row. Hence

¢1 ¢2 e qbn
L )
_alqsgn—l) —a1¢§n_1> . _algb%n—l)
01 ¢ 0 n
/ / . /
= - Qb.l ?2 ¢n =-—a W
(bgn_l) (bgn—l) . ¢£ln—1)

Thus W satisfies the first order equation W’ + a, W = 0.
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xT

Hence W (z) = cexp |— [ ai(t) dt|, where ¢ is some constant. Setting x = x
zo

we see that ¢ = W (xy), and thus

W(z) = exp [—f o (t) dt] W (o),

x0

T

That is W(¢17¢2a T :an)(l‘) = €Xp [_ f al(t) dt] W(¢17 ¢27 T 7¢n)(x0)7 L

o

Corollary 3.12. If the coefficients ay of L are constants, then
W(¢17 ¢27 Tty ¢n>(x) = 6—(11(%‘—&:0) W<¢17 ¢27 e 7¢n)<x0>

3.5 Reduction of the order of a homogeneous equa-

tion

Suppose we have found by some means one solution ¢; of the equation
L(y) = y™ 4 ay(z)y™ Y + - 4 a,(z)y = 0.

It is then possible to take advantage of this information to reduce the order of the
equation to be solved by one. The idea is the same one employed in the variation
of constants method. We try to find solutions ¢ of L(y) = 0 of the form ¢ = u¢y,

where u is some function.

Theorem 3.13. Let ¢; be a solution of L(y) = 0 on an interval I, and suppose
o1(x) #0 on I. If vy, vs,- -+ v, is any basis on I for the solutions of the linear
equation in v of order n—1, and if vy = u), (k=2,---,n) then ¢1,usr, -+ , unPr

is a basis for the solutions of L(y) =0 on I.

Proof. Let ¢1(x) # 0 be a solution of L(y) = 0 on an interval I. Let u be a function
on I such that ¢ = u¢, is a solution of L(y) = 0. Then we have

0 = (up)™ + ay(2)(ugy)™ " + -+ + an_1(2)(udr) + an(x)(uey)
— u(n)(bl + e + u¢§n) + alu(nfl)qbl _|_ e + alu(bgnil) + e
+ap_ U 1 + an_1ud| + apug;.

The coefficient of u in this equation is just L(¢;) = 0. Therefore, if v = «’, this is a
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linear equation of order n — 1 in v,
Gro" ) ot mbgnil) +ai(n — 1)¢§n72) + ot a1 |v=0 (3.15)

The coefficient of v»~V is ¢;, and hence if ¢;(x) # 0 on an interval I this equation
has n — 1 linearly independent solutions vy, v3,- -+ ,v, on I. If xy is some point in

and
xT

up = [op(t) dt, k=23, ,n

o

Then we have uj, = vy, and the functions

P1, U1, Unhr (3.16)

are solutions of L(y) = 0. Moreover these functions form a basis for the solutions of
L(y) = 0 on I. For suppose we have constants ¢, co, - - , ¢, such that
C1P1 + CoUzPr + - - + Crundy = 0.

Since ¢1(x) # 0 on [ this implies
c1+ oy + -+ - + cpu, = 0, (3.17)
and differentiating we obtain

C2u/2 4 c3ug 4+ Cnuﬁl =0, or coUg + c3v3 + - -+ 4+ cpu, = 0.

Since vs,v3, - -+ , v, are linearly independent on I we have

co=c3=---=¢,=0.

and from (3.17) we obtain ¢; = 0 also. Thus the functions in (3.16) form a basis for
the solutions of L(y) =0 on I. O

Theorem 3.14. If ¢; is a solution of L(y) = y" + ai1(x)y’ + ax(x)y = 0 on an
interval I, and ¢1(x) # 0 on I, a second solution ¢o of L(y) =0 on I is given by

P2() =¢1($)/ [¢1(13)]2 exp —/al(t) dt| ds.

The functions ¢1, o form a basis for the solutions of L(y) =0 on I.
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Proof. Let L(y) = y" + a1(x)y’ + az(x)y = 0 and if ¢, is a solution on I we have

L(u¢1> = (U(bl)” + Cll(U(bl)/ + (05} (ugbl)
= Py + 20/ ¢ + ug| + a1u' ¢y + ajud| + ayuep,
= u’¢r + U/ (20] + a1¢n).

Thus if v = v/ and w is such that L(u¢;) = 0,
¢1U/ + (2@5/1 + algzﬁl)v = 0. (318)

But (3.18) is a linear equation of order one, and can always be solved explicitly
provided ¢;(z) # 0 on I. Indeed v satisfies

GV’ + (2019 + argi)v =0, (3.19)

which is just (3.18) multiplied by ¢;. Thus
(¢7v) + ai(¢tv) =0,

which implies that
®?(x)v(x) = cexp [— [ ai(t) dt] :
o
where z is a point in I and c is a constant. Since any constant multiple of a
solution of (3.19) is again a solution, we see that
1 /q:‘
exp |— [ ai(t) dt| ds.
[1(5))”
zo
is a solution of (3.19), and also of (3.18). Therefore two independent solutions of
L(y) =0 on I are ¢; and ¢y where

x x

Pa2() :¢1($)/ [¢1(15)]2 exp —/al(t) dt| ds.

v(x) =

2
Example 3.15. Consider the equation y” — —y =0, (0 <z < 00).
x

Let ¢(v) = 22, Then it can be easily verified that the ¢, is a solution on 0 < x < oo
and since the function does not vanish on this interval there is another independent
solution ¢, of the form ¢g = u¢,. If v = u’ we find that v satisfies

220 +4av =0 or xv +4v=0.
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4
Then v + — = 0. This is a linear first order equation. A solution for this is given

T
by v(z) =27*, (0 <z < oc0), and therefore v’ = v = z7*.

Hence u(x) = [wv(z)de = % and so ¢o(2) = u(z)¢(z) = 5=

But since any constant times a solution is a solution, we may choose for a second

solution ¢s(z) = L. Thus 22, 2 are solutions on 0 < z < oco.

Since W (¢, ¢2)(x) = W (x?, 1)(z) = =3 # 0, {z?, 1} is linearly independent.

Example 3.16. Consider the equation z%y” — 7xy’ + 15y = 0, ¢1(x) = 23, x> 0.
Clearly ¢ (x) = x® satisfies the given equation. Also

xT x

$2(z) = u(z)d1(z) = ¢1(m)! [¢1(1x)]2 exp —Zal(x) dr | dx
= x?’/xl el & 4y

Since any constant times a solution is a solution we may choose a second solu-
tion ¢y(x) = 2°. Also, since W (¢, do) = 222 # 0 as x # 0, {23, 2%} is linearly
independent.

3.6 The non-homogeneous equation

Theorem 3.17. Let b be continuous on an interval I, and let ¢y, - -+ , ¢, ben linearly
independent solutions of L(y) = y™ + ay(x)y™ ™V + - +a,(z)y = 0 on I. Every
solution v of L(y) = y™ + a1(x)y™ ™V + -+ + a,(x)y = b(x) can be written as
V=1, + 191 + 202 + -+ Cuy
where 1, is a particular solution of L(y) = b(x) and ¢y, ca, -+ , ¢, are constants.

Every such 1 is a solution of L(y) = b( ). A particular solution is given by
b(t)
e / dt.
Z ) W ¢1,¢2,~  6a)(2)

Proof. Let ay(x),as(x), -+ ,a,(x),b(x) be a continuous function on an interval I,

and consider the equation

63



L{y) = y™ + ar(2)y™ Y + - + an(2)y = b(2),
If ¢, is a particular solution of L(y) = b(z) and 1 is any other solution, then
Ly —tbp) = L(¥) — L(¢p) =b—b=0.
Thus ¢ — v, is a solution of the homogeneous equation L(y) = 0, and this inplies
that any solution ¢ of L(y) = b(z) can be written in the form

Y =1y + 101 + oo+ -+ Ccpdy

where 1, is a particular solution of L(y) = b(z), the functions ¢y, ¢, - - , ¢y, are

n linearly independent solutions of L(y) = 0, and ¢, ¢a, - - - , ¢, are constants.

To find a particular solution v, we proceed just as in the case n = 2, that is, we
use the variation of constants method. We try to find n functions wuy, us, - - - u, so
that

Yp = U1 + UaPo + - -+ UL Dy,

is a solution. If
uy o1 + uyds + - -+ updy, =0,

then
Uy = w1 @) + Uy -+ und,
and if
W i, =0,
then
Uy = w1 + uadly - -+ + upy,
Thus if u}, ub, - -, ul, satisfy
Uy 1 A uydy + -+ U =0
U+ s+ U, =0
: (3.20)
¢ gy o =0
R /1 Sl
we see that
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Yp = U1P1 + UsP2 + -+ + Uy

V), = ury + uady + - + Uy,

: (3.21)

e = o™ 4 uagl Y g
U = wl” - udy” o+ b

Hence L(vp) = w1 L(¢1) + uaL(¢2) + -+ + upL(dn) + b =10,
and indeed v, is a solution of L(y) = b(x). The whole problem is noW reduced

to solving the linear system (2.22) for u),uj, - ,u,,. The determinant of the co-
efficients is just W (1, ¢2, - - , ¢y), which is never zero when ¢y, - , ¢, ae linearly
independent solutions of L(y) = 0. Therefore there are unique functions uf, - ,u/,,

satisfying (2.22). It is easy to see that solutions are given by
Wi(z) b(x)
uy(x) = , k=1,2---,n
M) = o o@ )
where W, is the determinant obtained from W (¢q, - , ¢,,) by replacing the k—th
column (that is ¢g, @}, - -, ,(Cn_l)) by 0,0,---,0,1.

If x4 is any point in [ we may take for uy the function given by

(1)
d L —
W ¢1 ¢2,--- oy & k=12 m)

The particular Solutlon Y, now takes the form

t
Z¢k / W¢1 qbz,--- ,)qbnxt) . (3.22)

2
Example 3.18. Consider the equation " — —y =2 (0 <z < 00).
T

We have already see in section 3.5 that a basis for the solutions of the homogeneous

equation is given by

A solution v, of the non-homogeneous equation has the form

_ 2 -1
Yy = U T° + UT
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where v, uj satisfy

r?uy + 27 b, = 0 and 2zu) — 272U, = .

1 .3
Now W (¢1, ¢2)(x) = —3 and we find that v} (x) = 3 ul(x) = Tx
T rt
For wuy,us we may take u;(z) = 3 uy(z) = T
4 3 3 3
h @ (D) - (L) =22
and we see that ¢, (z) = (2*) 3 (27 1) 5 ; 5=

1
3
Every solution ¢ of given equation has the form ¢(z) = ) + c12% + cyz ™ where

c1, Cy are constants.

Since we can always solve the non-homogeneous equation L(y) = b(x) by using
algebraic methods and an integration, we now concentrate our attention on methods

for solving the homogeneous equation.

Exercise:

1. One solution of 2%y” — 2y =0on 0 < x < oo is ¢1(z) = 2% Find all solutions of
2%y’ —2y=2r—1on0 <z < 0.

2. One solution of 2%y” — 2y’ +y = 0 on (x > 0), is ¢;(z) = z. Find solution 1 of
22y — xy' 4+ y = 2% satisfying ¥(1) = 1, (1) = 0.

3.7 Homogeneous equations with analytic coeffi-

cients

If g is a function defined on an interval I containing a point zy, we say that g is
analytic at zq if g can be expanded in a power series about xy which has a positive

radius of convergence. Thus g is analytic at z( if it can be represented in the form

g(x) = Z cr(x — x0)F, (3.23)

k=0

where the ¢;, are constants, and the series converges for |z — zg| < 19, 79 > 0. one
of the important properties of a function g which has the form (3.23), where the
series converges for |z — x| < 1o, is that all of its derivatives exist on |x — o] < 7o,

and they may be computed by differentiating the series term by term. Thus, for
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example

g(@) = 3 hey(x — mo) 7,

k=1
and

q"(z) = ]ik(k — Deg(x — 20)F72,

and the differentiated series converge on |x — zg| < 7o also. If the coefficients
ai,---,a, of L are analytlc at xy 1t turns out that the solutions are also. In
fact solutions can be computed by a formal algebraic process. We illustrate by
considering the following example.

Example 3.19. Consider the equation L(y) = y” — xzy = 0. Here a;(z) = 0 and
as(x) = —x, and hence a1(x), az(x) are analytic for all real xy. Now we try for the

series solution. Consider the series

o(z) = 3 cxat
k=0

Then .
¢'(x) = 3 kepa*™!
k=1
" (z) = Z k(k — 1)cpa®™ Z (k+2)(k + 1)cpy0z”.
k=2 k=0
Also . .
zo(x) = Y gttt =3 ¢ qa”
k=0 k=1
Then
¢"(z) —xp(x) = Z (k4 2)(k + 1)cppoz” — Z Ccr1a”
k=0 k=1

= 2o+ Z [(k+2)(k+ 1)cpro — ]

In order for ¢ to be a solution of L(y) = 0 we must have

¢"(x) — xo(x) =

That is 2co + > [(k + 2)(k + 1)cpyo — cx1] 2% = 0,
k=1

This is true only if all the coefficients of the powers of x are zero. Thus

262:0, (k:—|—2)(k‘+1)ck+2—ck_1:()’ (kj:1727)
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This gives an infinite set of equations, which can be solved for the c.

Thus, for £k = 1, we have 3.2c3 = ¢y. That is ¢3 = ;—02.
Then for kK = 2 we have ¢4, = i
4.3
Continuing in this way we see that
754 "7 65 6532 ' 76 7643
It can be shown by induction that
Co
m ) :172737'”7
e 2356 Gm_1gm " )
C1
m ) = 1a 27 37 )
Gmit = e amGmen )
C3m+2 — 0 (m:O,l,Z,)

Thus all the constants are determined in terms of ¢y and ¢;. Collecting together

terms with ¢y and ¢; as a factor we have

[e.9]

o) = Y et

k=0

o0
= ¢ot+cx+ E ckxk
k=2

3Im 3m—+1

- 00 co T > 1 T
T oorart mz_:l 2356, (3m—1)3m 2. 3.4.6.7.---3m(3m + 1)

m=1

$3m

o) 3m+1
= |1
ot mzl 2.3.5.6.- (3m —1)3m

> x
v mzl 3.4.6.7.--3mB3m + 1)

+ ¢

Let ¢, ¢o represent the two series in the brackets. Thus

e 3m
X
=1
“1(w) * mzl 2.3.5.6. - (3m — 1)3m
o0 3m+1 (3.24)

e

Po(x) = x+ mzzl 3.4.6.7.---3m(3m + 1)

Thus we have shown that ¢ satisfies y” — xy = 0 for any two constants ¢y, c;. In
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Particular, the choice ¢y = 1,¢; = 0 shows that ¢; satisfies this equation, and the
choice ¢y = 0,¢; = 1 shows that ¢, also satisfies the equation. Next we have to
check the convergence of the series ¢1(z), ¢2(x). It can be checked easily by ratio
test that both series converges for all finite x.

Let us consider the series for ¢;(x). Writing it as
& x

3m

we see that
dps1 33 2.3.5.6.---(3m — 1)(3m)
A 2356.--(Bm—1)(3m)Bm +2)3m +3) m
1,3
— (3m+2)(3m + 3)
dns1| 3
dm | ‘ (3m +2)(3m + 3)
KN

|
(3m +2)(3m + 3)’

which tends to 0 as m — oo, provided only that |z| < co. Hence ¢;(x) is convergent.

In the similar way, we can prove that ¢o(z) is convergent.

Next to check ¢1(z), ¢o(z) are linearly independent solutions, it is clear from the
series (3.24) defining ¢; and ¢ that

G1(0)=1,  ¢2(0)=0, ¢}(0)=0, 4(0)=1.
¢1(0)  ¢2(0) 10
94(0) ¢4(0) | |0 1

Hence ¢1, ¢o are linearly independent.

and therefore W (g1, ¢2)(0) = =1#0.

Theorem 3.20. (Existence Theorem for Analytic Coefficients) Let zp be a real
number and suppose that the coefficients ay,as,--- ,a, in
L(y) — y(n) + aly(n_l) + e + any

has convergent power series expansions in powers of © — zy on an interval |z — x| <
ro, o > 0. If ay,a9, -+ ,q, are any n constants, there exists a solution ¢ of the
problem

L(y) = 07 y($0) = 01, >?J(n71)($0) = Qp,

with a power series expansion



convergent for |x — xo| < r9. We have k! ¢, = ag41, (k=0,1,2,--- ,n—1), and
¢, for £ > n may be computed in terms of ¢y, ¢y, - -+ , ¢,_1 by substituting the above

series into L(y) = 0.

Exercise:

1. Find two linearly independent power series solutions(in powers of z) of the
following equations.

(a)y"+y=0 (b) ¥ —xy' +y=0

(c)y" =%y =0 (d) y" + 2%y + 2%y =0

3.8 The Legendre equation

Some of the important differential equations met in physical problems are second

order linear equations with analytic coefficients. One of these is the Legendre equa-

tion
Lly) = (1—2%)y" — 22y + ala+ 1)y =0 (3.25)
where « is a constant. If we write this equation as
2z ala+1)
Z /
_ -0
Y 1 xQCU 1 — 22 Y )
we see that the functions ay, as given by
—2x ala+1)
wl) =1 el =T
are analytic at z = 0. Indeed,
1 2, 4 o

and this series converges for |z| < 1. Thus a; and ay have hte series expansions
[e.°]

ar(r) = 3520(=2)2* 1, ax(x) = kZ:OOé(Oé + 1)a?,

which converge for |z| < 1. From Theorem 3.20 it follows that the solutions of
L(y) = 0 on |z| < 1 have convergent power series expansions there. We proceed to

find a basis for these solutions.

Let ¢ be any solution of the Legendre equation on |z| < 1, and suppose

P(x) =co+ 1z + o’ + - = Z cpa. (3.26)
k=0
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We have ¢'(x) = c; + 2cow + 3z’ + - = Z ket

o0

—2z¢'(x) = Z —2kca®. (3.27)

k=0

" (x) = 200w + 3.2c3x + -+ = Z k(k — 1)cpa®2,

= k(k = 1)ea*. (3.28)
k=0

Note that ¢"(z) may also be written as

= (k+2)(k+ epraa®, (3.29)
k=0

From (3.26)-(3.29) we obtain
L(¢)(x) = (1 = 2%)¢"(x) — 22¢/(z) + (v + 1) ()

o0

L(¢)(x) = Y (k+2)(k+ 1)cppor” - Z k(k —1)ea® — Z 2kepak
+a(a+1) i cpa®
k=0

[(k+2)(k + 1)cppo — k(k — 1)eg — 2ke, + aa + 1)cg] 2

WE

=
Il
o

[(k+2)(k+ epo + (a+k+ 1) (a — k)eg] 2%,

NE

i

0

since —k(k—1)—2k+a(la+1)=—k(k+1)+a(a+1)=—k(k+1)+a(a+1)+
ak —ak=—k(la+k+1)+ala+k+1)=(a+k+1)(a—k).
For ¢ to satisfy L(¢) = 0 we must have all the coefficients of the powers of x equal

to zero. Hence
(k+2)(k+ Vg + (a+k+1)(a—k)ep, =0, (k=0,1,2,--) (3.30)

This is the recursion relation which gives ¢y, in terms of ¢;. For k = 0 we have
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Co = — 9 Co,
For k =1 we get
a+2)(a—1
R
Similarly, for k£ = 2,3 we obtain
__@+30-2) _(a+3)atDal@-2)
- 4.3 2 4.3.2 0
. (et 4(a=3) o (a+4)(a+2)(a—1)(a—23) .
o 5.4 T 5.4.3.2 !

The pattern now becomes clear, and it follows by induction that form =1,2,--- |

mola+)(a+3) - (a+2m—1)(a—=2)(a—4) - (. —2m +2)
(2m) !

Com = (_1> Co,

(a+2)(a+4) - (a+2m)(a—1)(a—3) - (o —2m + 1)
(2m+1)!
All coefficients are determined in terms of ¢q, ¢, and we must have

P(x) = co ¢1(x) + 1 Pa(w)

Cy = (—1)

1

where

nola+)(a+3) - (a+2m—1)(a—2)(a—4) - (. —2m +2)

¢1(z) = 1+§1(_1) (2m) !

¢2(Ilf) =+ (_1)m

(a+2)(a+4) - (a+2m)(a—1)(a—=3) - (a—2m+1)
(2m+1)!

Both ¢, ¢, are solutions of the Legendre equation, those corresponding to the
choices

co=1, ¢1=0 and ¢ =0, ¢ =1,
respectively. They form a basis for the solutions, since
01(0) =1, ¢2(0)=0; ¢1(0)=0, ¢5(0)=1.
We notice that if « is a non-negative even integer n = 2m, (m=0,1,2,--),

then ¢, has only a finite number of non-zero terms. Indeed, in this case ¢; is a
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polynomial of degree n containing only even powers of x. For example,

o1(x) = 1, (e =0),
$1(z) = 1-— 327 (v =2),
$1(z) = 1—102% + %x‘l, (v =4).

The solution ¢, is not a polynomial in this case since none of the coefficients in the

series of ¢y(x) vanish.

A similar situation occurs when « is a positive odd integer n. Then ¢, is a
polynomial of degree n having only odd powers of x, and ¢; is not a polynomial.

For example,

¢2(?L’> = T, (Q{ - 1)’
bo(r) = = — gac?’, (v = 3),
bo(z) = o— %x?’ + 251x5, (a=5)

We consider in more detail these polynomial solutions when o = n, non-negative

integer. The polynomial solution P,, of degree n of
(1 —2%)y" — 2xy' +n(n+1)y =0, (3.31)

Sstisfying P,(1) = 1 is called the n—th Legendre polynomial. In order to justify this
definition we must show that there is just one such solution for each non-negative

integer n.
Let ¢ be the polynomial of degree n defined by
- 2 1"
6e) = (e = 1)

This ¢ satisfies the Legendre equation (3.31). Indeed, let
u(x) = (22 — 1)™.

Then we obtain by differentiating
u'(r) = n(x? —1)""1(22)
= 2nz(x® —1)"(2* - 1)7"
(22 — D' (z) = 2nz(z* —1)"

(2 — D' (z) = 2nw u(x)
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Thus (22 — 1)u/(x) — 2nz u(z) = 0. Differentiating this expression n+ 1 times yields
(22 = Du™*D £ 22(n+ 1) v + (n+ 1)n u™ — 2nzu™+) —2n(n+1) v = 0.
Note: (fg)™ = fg™ + (") fgm=D + (2) f7g™2) 4 ... 4 (") Vg 4 fog.

n

d
Putting ¢ = d—(x2 — 1)" = u™ we obtain
xn

(= 1)¢" +2(n+ a¢ + n(n+1)¢ — 2nz¢’ —2n(n+1)¢ = 0
(22 = 1)¢" +22¢' —n(n+1)¢p = 0
(1—2%¢" —2z¢' +n(n+1)¢p = 0

We have shown that ¢ satisfies (3.31). Thus ¢ is a solution of (3.31). This polynomial
¢ satisfies

(1) = 2" nl.
This can be seen by noting that
a
= —(2—1)"
br) = (1)
a
- (21"
T = 1)

— [(iIZ‘Q o 1>n:| (n)
= -1+ 1y
= [(z—1)"" (z+1)"+ terms with (z — 1) as a factor

= nl(z+1)"+ terms with (z — 1) as a factor.

Hence ¢(1) = n 12" as stated.

It is clear that the function P, given by

1
~2np ) dan
is the solution of (3.31) and it is the Legendre polynomial provided that P, (1) = 1.

This P,(z) is known as Rodrigues formula.

P,(x) (% —1)"
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Note:

1
Py(x) = 5001 (22 -1 =1
1 d, ., 2z
A =g V=5 =7
1 & 3 1
P2<"L‘) — 222 ' @(IZ _ 1)2 — _I‘Z _
1,

Properties of Legendre Polynomial

Generating function: The function G(¢,z) given by

Gt,r) = —m——
(t,2) V1 — 2zt +t2

is called generating function of Legendre polynomial.
1

V1 — 2zt + 2

Note: Expanding = (1—2zt+ t2)71/ 2 by binomial expansion we get

the relation

V1—2xt + 152 Z Bl

Recurrence Relations:

1. (2n+ 1)xPy(x) = (n + 1)Pyi1(x) + nPy_q(x)

1 [o.¢]
Proof: We know that ——— = P, (x)t
V1 —2xt +t2 Z (=)

Differentiating with respect to ¢t we have

d 1 d [ .
dt (\/1 —2xt—|—t2> Tt (;Pﬂ(m)t ) '

! me{Clad) = Z nP,(z)t"!

2 (1 — 2at + 12)3/2

n=0
(z —t) 1
P, (x)t"~

(1— 2zt + £2) (1—2mt+t2 )72 Z"

(z—1) - ~1
(1— 22t + £2) nz_; Z"
(x—1t) > Py(x)t" = (1 —2xt +t*) > nP,(z)t"!

= n=0
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i}mpn(x)t”— i_ozo ()t = inpn(w)t"_l— i_ojo 2na P, (x)t"+ i_o:onpn(x)t”“
f;o 2Py (2)i" — f;o Py (2)th = iﬂ (n+ 1) Py ()" — f;o 2P, (2)i"

+ io(n )Py (@)
io (2n + D)aP,(2)t" = f;o(n )Py (1)t + i‘o NPy 1 (2)t"

Equating the coefficient of t” we have

2n+ 1)aP,(z) = (n+ 1)Pyy1(x) + nPy_1(z).
- (204 1D)Pu(x) = Pl (x) — Py (x)
Proof: We know that

1 dF 9 &

, d (1 d&
Pi(x) = @(2’“_1:' @(332_1}16)
1 d* [d )
= zk—m@(a(@f?‘” )>

1 dk 2 k—1

2k d* _
= o gr DT

1 d*=t /d ) .
T (k1) deh (% (o = 1)" >)

1 dst _ -
= PTE 1)l e ((k — Da(2® — 1)*2(22) + (2 — 1)* 1)
/ 1 d"! 2 k-2 2
Pl(z) = Pk D d ((z* = 1) ((2k — 1)z* — 1))
/ L oda 2 n—1 2
Thus for k = n+1 we have P, (z) = Py e (> =D ((2n + 1)2* — 1)),
"n! axm
From Rodrigues formula at n — 1, we have
1 dn—l 2 n—1

Poa() (z°—1)

- 2=t (n —1)! dan—t

/ d 1 dnil 2 n—1
Proi(z) = dx <2”—1(n —1)! dan-t (z"=1) )
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P = o (e =)

2nn! \ dz”

As a consequence we have

1 a

Pr(@) = P _i(x) = ol den (($2 — 1)t ((Qn +1)a? — 1))

2n dar o
ol (Wff -1 )
1 d ) o , .
= o7 7 (Cn D = 1)(@® = 1) = 2n(a® — 1))
) : ] j— [(#* = 1)" " (2na”® + 2* — 1 — 2n)]
! dx™
1 d° [
2rn! dxn
1 d" 2 n—1 2
= 9npl dgn (2 = )" ((2n + 1)(2® - 1))]
1 d°
= 9npl den [(z* = 1)"(2n + 1)]

2nn!  dxn
Pp(x) =P, (x) = (2n+1)P.(v)

(2 — 1) ' 2n(2? — 1) + (2 — 1))]

Hence (2n + 1)P,(z) = P, () — P_,(x)

. xPl(x) =P, _,(x) =nP,(x)
Proof: We know that

—m — Z P, (3.32)

Differentiating (3.32) with respect to ¢, we have

(1 =2zt +t2)732(=22 +2t) = > nP,(z)t"*
n=>0

1
2
(1 —2at +t2) 2 (x ZnP )t (3.33)

Differentiating (3.32) with respect to x, we have
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(1 =2zt +12)732(=2t) = 2_)0 P! (z)t"

(1 —2at + 2)73/2(¢ Z P (x (3.34)

Dividing (3.33) by (3.34),

(. —t)(1 — 2at + ¢3) %2 Zn:nPn(x)t”—l
t(1 — 2at 4 ¢2)=3/2 = TSP

(z—1) 2nb (@)t
G

(x —t ZP’ =ty nP ()"
Z P (z Z P (x)t"tt = Z nP,(z)t"
Z P! (x Z = Z nP,(x)t"

Equating coefficient of ¢, we have

wP(x) = By (x) = nPy(x)

4. P’n+1(x) —xP (x) = (n+1)P,(x)
Proof: We know that

P'n+1(z) — P'n—1(z) = (2n+ 1) P,(x) (3.35)

xzP!(x) — P_,(z) =nP,(z) (3.36)

Pn+1(z) — 2P (x) = P, 4(z)—P,_(x) —nP,(x), using (3.36)
= (2n+1)P,(z) —nP,(x), using (3.35)
= (n+1)P,(2)

Hence P, (z) — zP)(z) = (n+ 1)P,(x)
Orthogonal property:
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This is the most important property of Legendre polynomial.

0 if m#n
/Pm(x)Pn(x)dx = ) (3.37)
if m=n
-1 2n+1

Proof:
Let f(x) be any function with atleast n continuous derivatives on the interval
—1 <z < 1. Consider the integral

]:ff(x)Pn(x)dx

1 d?
2nn | dxn

We know that P,(x) =

—— (@ = 1)

2 -1)"d
/f 2"n' da:"(x )dz

- Z”n'/f (2% — 1)"dx

Applying integration by parts (i.e., [udv =uv — [wvdu), by taking
dn
u= f(z), dv = —

(% — 1)™ we have

dx"
1 dn—l ) dr— 1
= —1 1)
%niﬂ@dWAm >]1 2nn,/f (@ — 1)
n—1
That is I = d (#* — 1)"dx, since the first term is zero after

applying the limit.

By continuing the integration by parts n times, we obtain
1

zgﬁf/}wuwﬁ—UWx

If f(z) = Py(x) with m < n, then f™(z) = 0 and so I = 0 which proves the first

79



part of (3.37). Now put f(x) = P,(z).
I = /f(x)Pn(x)dx

1 " 1 "
= / d—(xz -1 d—(mQ —1)" dx

2np | dxn 2nn | dzgn
el

n n

Applying integration by parts by taking u = d—(a:2 —1)" and dv = d—(x2 - 1",
" "
we have
1
-1 dn—l ) " dn+1 ) "

-1

By continuing the integration by parts n times, we obtain

I = (=1)" /(a:2 —-1)" ik (z? —1)" da.

dx2n

2n)! / o\n 2(2n)! / o\
= %/(1—3:)dx:<27(ln!>)2/(1—:c)d:c

By change of variable, x = sin § we have dx = cos@ df.
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Also the limit when x = 1,0 =0; v = 1,0 = 7. Then

1

I = Wo/(l—x)dx

w/2
|
= 2(2n)! (1 — sin® z)™ cos 6§ df
(2mn 1)2
0
w/2
2(2n)!
= %/0032"60086 do
"n !
0
w/2
2(2n)!
— (275””'))2 /cosQnHG db
70

2(2n)! (2n)(2n —2)---4.2
(2 )2 (2n+1)2n—1)---5.3
w/2

(2n—1)(2n —3)---3.1

Using the result / cos?™ 0 df = (2n)(2n —2) - - 4.2

' (2"(n)(n—1)---2.1)((2n)(2n — 2) - - - 4.2)

_ o _2@n)!

- 22n(n 1)2 (2n+1)(2n)(2n —1)---5.4.3.2.1

_ 20 @"(n)(n—1)---21)2"(n)(n—1)---2.1)
22n(p )2 (2n 4+ 1)!

_2(2n)! (2"m))(2"n))
22n(n N2 (2n 4 1)!

;o 2

2n+1

Hence the proof.
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Chapter 4

Linear equations with regular

singular points

4.1 Introduction

We consider the linear equation with variable coefficients
ao(2)y™ + a1 (z)y™ Y + - + an(z)y = 0. (4.1)

We shall assume that the coefficients ag,aq,--- ,a, are analytic at some point xg
and we shall be interested in an important case when ag(z9) = 0. A point z( such

that ag(zo) = 0 is called a singular point of the equation (4.1).

We say that zg is a regular singular point for (4.1) if the equation can be written

in the form
(z — 20)"y™ + by (2)(x — 20)" YV + - + by(2)y =0 (4.2)

near xo where the functions by, --- , b, are analytic at xy. If the function by,--- , b,

can be written in the form
bo(7) = (. — 20)*Bp(z), (k=1,2,---,n),

where (1, (2, -+ - , B, are analytic at xy, we see that (4.2) becomes

y™ 4+ 5 (x)y("fl) +- -+ Gu(z)y=0 (4.3)
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upon dividing out (z — xo)". Thus (4.2) is a generalization of the equation with
analytic coefficients. An equation of the form
co(a) (@ — xo)"y™ + e (@) (2 — 29)" 'y 4+ g (2)y = 0

has a regular singular point at zg if ¢g, ¢y, - - , ¢, are analytic at zo, and co(xg) # 0.
This is because we may divide by ¢q(x), for = near xg, to obtain an equation of the
form (4.2) with bg(z) = cx(x)/co(x), and it can be shown that these by are analytic

at Zo.-

We first consider the simplest case of an equation, not of the type (4.3), having
a regular singular point. This is the Euler equation, which is the case of (4.2) with
by, --- , b, all constants. Next we investigate the general equation of the second order
with a regular singular point, and indicate how solutions may be obtained near the

singular point. For & > z such solutions ¢ turn out to be of the form
¢(x) = (x —x0)"0(x) + (2 — 20)°p(x) log(z — x0),
where 7, s are constants and o, p are analytic at xg.

Consider the equation

3
2y =y =1y =0 (4.4)

. The origin xy = 0 is a singular point, but not a regular singular point since the
coefficient —1 of 3/ is not of the form xb;(x), where b is analytic at 0. We may solve

this equation by a series
Z cra®, (4.5)
k=0

where the coefficients ¢, satisfy the recursion formula

3

(k‘—i—l) Ckt+1 = (kz—k‘—1> Ck, (k:O,l,Q,"-) (46)

If ¢g # 0, the ratio test applied to (4.5),(4.6), shows that

k+1
Chp1Z"T

cprk

k2 —k—3
k+1
provided |z| # 0. Thus the series (4.5) will only converge for = = 0.

|z| — 00, as k — oo,
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4.2 The Euler equation

The simplest example of a second order equation having a regular singular point at

the origin is the Euler equation.

Theorem 4.1. Consider ther second order Euler equation
L(y) = 2*y" + axy’ + by = 0,

where a,b are constants, and the polynomial q given by
g(ry=r(r—1)+ar+>b

A basis for the solutions of the Euler equation on any interval not containing x = 0
15 given by

¢1(z) = ||, da(x) =[],
i case r1,ry are distinct roots of ¢ and by

¢1(x) =[], go(z) =[] log |z,

if r1 is a root of multiplicity two.
Proof. Consider the equation
L(y) = 2%y + axy' + by =0, (4.7)

where a, b are constants. We first consider this equation for z > 0, and observe that
the coeficient of y* in L(y) is a constant times x*. If r is any constant, 2" has the
property that its k—th derivative times z* is a constant times z". For example

(") =ra’, 22(2")" =r(r—1)z".

This suggests trying for a solution of L(y) = 0 a power of z. We find that
L(z") = [r(r—1)+ar + bz".

If ¢ is the polynomial defined by
q(r) =r(r—1)+ar+b,
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we may write

L(z") = 2*(2")" + azx(z") + b(a")
= r(r—1)z" +arz” + ba"
= (r(r—=1)+ar+b)x"
L(z") = q(r)z’ (4.8)

and it is clear that if 7 is a root of ¢(r) then ¢(r;) = 0. Therefore
L(z}) = q(r1)a" = 0.

Thus the functiong, given by ¢;(x) = 2™ is a solution of (4.7) for x > 0.

Case 1: If r5 is the other root of ¢, and o # r; , then we obtain another solution
65 given by go(z) = 2™,
claim: ¢; and ¢ are linearly independent in the case ry # rs.

Suppose c1, ¢ are constants such that
x™ +ex™ =0, (x>0)

)

then
e +cex™ =0, (z>0). (4.9)

Differentiating we see that cy(ry — r1)c™2 "1 = 0, which implies ¢ = 0, since
ro — 11 # 0 and x # 0. From (4.9) we obtain ¢; = 0 also. Hence ¢1, ¢ are linearly

independent.

Case 2: The roots 7,79 of ¢ are equal then ¢(r1) = 0,¢'(r1) = 0, and this suggests
differentiating (4.8) with respect to r. Indeed

9 9 ,
_ 8 log ™
- (5
- a rlogx
= ()

= L(e“"gzlogm)
= L(z"logx)
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L(z"logz) = 2*(2" log z)" + ax(x"logz) + b(x"logz) = [q(r)logz + ¢/ (r)]x"
Since 7 is a equal root of ¢, ¢(r;) = 0 and ¢/(r;) = 0. Then L(z™ logz) = 0.
Therefore ¢o(z) = 2™ log x is a second solutions of (4.7) in this case.

claim: ¢, and ¢, are linearly independent in the case ry = rs.

Suppose ¢y, ¢ are constants such that c;¢; 4+ capo = 0. That is
™ + cxloge =0,  (x>0)

)

then
g +cloge =0, (x>0). (4.10)

Differentiating we obtain % = 0 for (z > 0), which implies c; = 0, since 73 — 11 # 0

and z # 0. From (4.10) we obtain ¢; = 0 also. Hence ¢4, ¢ are linearly independent.
In either case the solutions ¢; and ¢9 are linearly independent for x > 0.

We define 2" for r complex by 2" = e"8% (2 > 0).
r r
Then we have (z7)" = (e"'°8%) = "8 %(rlogz) = —e"'%8% = —g" = rz" 1,
x

and g(ﬂ) - g(e“‘)g”) = log z(e"'°") = 2" log x,

or

which are the formulas we used in the calculations. Solutions for (4.7) can be
found for x < 0 also. In this case consider (—x)", where r is a constant. Then we

have for x < 0,
(=2)] = =r(=2)""" [(=2))" =r(r=D(=2)?
and hence z [(—1)"] = —r(=2)", 2?[(-2)")" =r(r — 1)(—2)".

Thus L((—x)") = q(r)(—z)", (z <0).

Also %[(—x)"] = (—x)"log(—z), (z<0).

Therefore we see that if the roots r1,ry of ¢ are distinct, then two independent

solutions ¢1, ¢ of (4.7) for x < 0 are given by
¢1(x) = (=)™, ¢ofz) = (—2)”, (z<0)
and if r; = 79, then two solutions are given by
¢1(x) = (=2)",  ¢ox) = (—x)™ log(=z), (z<0)
These are just the formulas for the solutions obtained for x > 0, with x replaced

by —x everywhere. Since |z| = z for x > 0, and |z| = —z for x < 0, we can write
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the solutions for any = # 0 in the following way:
¢1(x) = =™, da(a) = |z|™, (2 #0),
in case r; # ry and
Gr(x) = [x[™, ga(x) =[x logz], (2 #0),
in case r; = ro. ]

Example 4.2. Consider the equation x*y" + xy' +y =0 for x # 0.

The polynomial q is given by
gir)=r(r—=1)+r+1=r*+1
and its roots are r1 =1 and ro = —i. Thus a basis for the solutions is given by
$1(z) = [a]', do(x) = |27, (v #£0),
where |z|' = e Note that in this case another basis 1,19 is given by
Ur(x) = cos(log|z]), va(z) =sin(log|z]), (z #0).

Remark 4.3. The above theorem can be extended to n'® order equation

ilog |z|

L(y) _ :L,ny(n) + alwn—ly(”_l) +---+a,y=0 (411)

where ay,as,--- ,a, are constants. Then for any constant r we have L(|z|") =
q(r)|z|” where g(r) =r(r—1)---(r—n+1) +ar@r—1)---(r—n-+2)+ - +a,.

This polynomial is called the indicial polynomial for the Euler equation (4.11). If
71 is a root of ¢ of multiplicity m, then ¢(r;) =0, ¢'(r;) =0, ---, ¢™Y(r) =0,
and we see that

[, Ja| log x|, -+, z[ log™ ™ ||
are solutions of L(y) = 0. Repeating this process for each root of ¢ we obtain the

following result.

Theorem 4.4. Let r1,79,--- ,7s be the distinct roots of the indicial polynomial q
for L(y) = 2™y"™ + ay2" 'y ... £ a,y = 0 and suppose r; has multiplicity m;.
Then the n functions

™, Je log x|, -, |z log™ T |l
|x’T27 |‘r’T2 lOg‘LE|, Ty ‘x|r2 logmg_l‘x|;
jz[7s, Ja|™ log |z, -, |z log™ ™" |z|

form a basis for the solutions of the n—" order Euler equation on any interval not
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containing x = 0.

Exercise:

1. Find all solutions of the following equations for z > 0:

(a) 2%y + 2zy’ — 6y =0 (b) 2z%" +xy —y =0
(c) 2®y" +ay —dy==x (d) 2%y" — by’ + 9y = 23

4.3 Second order equations with regular singular

points-an example

A second order equation with a regular singular point at zy has the form

(z — 20)*y" + a(z)(x — xo)y' + b(z)y = 0, (4.12)
where a, b are analytic at xy. Thus a,b have power series expansions
a(x) = 3 ar(z —x0)*,  bx) = 3 Brlr — z0)",
k=0 k=0

which are convergent on some interval |x — x| < rg, for some ry > 0. We shall be
interested in finding solutions of (4.12) near zy. In order to simplify our notation

we shall assume zy = 0.

If it is easy to change (4.12) into an equivalent equation with a regular singular
point at the origin. We let t = x — xy, and
E(t) = CL(ZEO + t) = Oéktk, E(t) = b(l’o + t) = ﬂktk

The power series for @, b converge on the interval [t| < ro about t = 0. Let ¢ be
any solution of (4.12), and define ¢ by

¢(t) = oz +1).

Then . — ,
do do d°¢ d*¢
—(t) = — ), ——(t)=— t
dt( ) dx(x0+ )7 dtg( ) dl’g(xo—i_ )7
and we see that ¢ satisfies
t2u” +a(t)tu' + b(t)u = 0, (4.13)

Where now v’ = du/dt. This is an equation with a regular singular point at ¢ = 0.

Conversely, if ¢ satisfies (4.13) the function ¢ given by
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¢(x) = oz — o)
satisfies (4.12). In this sense (4.13) is equivalent to (4.12). With 2o = 0 in (4.12)

we may write (4.12) as
L(y) = 2*y" = a(z)zy + b(x)y = 0 (4.14)

Where a, b are analytic at the origin, and have power series expansions
o0 o
a(x) = Zakxk, b(x) = Zﬁkxk, (4.15)
k=0 k=0

which are convergent on an interval |z| < ry, 79 > 0. The Euler equation is the
special ease of (4.14) with a, b constant. The effect of the higher order terms (terms
with z as a factor) in the series (4.15) is to introduce series into the solutions of
(4.14). We illustrate by an example.

Example 4.5. Consider the equation

3
L(y) = 2°y" + 51’@/ +ay=0 (4.16)

which has a regular singular point at the origin. Let us restrict our attention to
x > 0. Since it is not an Euler equation we can not expect it to have a solution of

the form 2" there. However we try for a solution.

(b(m) =a" Z Ckﬂ:k = Coxr + Cl.fL’TJrl + - (CO % 0), (417)
k=0

We find that (x) = cora™ + ex(r + D + ex(r + 27 4 -+
&"(x) =cor(r —Da™ 2 +cyr(r+ Da"t +eo(r+2)(r + )a" + - -,

and hence
22" (x) = cor(r — 1)a" + cyr(r + Da™ + co(r + 2)(r + D22 + -+

Sx¢/(x) = Scora” 4 Sei(r + D)™ + Sep(r 4+ 2)a 2 4 -
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2¢(x) = cor™ + 1™+ cpr" T
Then

L)) = #6'(@) + 526/ (x) + 26()

= [T(r —1)+ gr] cor” + { {r(r +1)+ g(r + 1)} e+ co} "t

+{[(T+2)(r+1)+3(r+2)} c2+c1}x’"+2+---

2
If we let q(r) =7(r — 1)+ 2r=r(r+3),

This may be written as

L)) = qr)cox” + {q(r + Der 4+ cola™ + {g(r +2)ea + ey a2+ - -

= q(r)eor” + 2" [q(r + k)er + cpa]z”.
h=1

If ¢ is to satisfy L(¢)(x) = 0 all coefficients of the powers of & must vanish. Since

we assumed cq # 0 this implies
Q(T) = 07 Q(T_l_k)ck_‘_ck—l = Oa (k - 1a27) (418)

The polynominl ¢ is called the indicial polynomial for (4.16). It is the coefficient of
the lowest power of x appearing in L(¢)(z), and from (4.18) we see that its roots

are the only permissible values of r for which there are solutions of the form (4.17).

-1

Here the roots are 1 =0, r = 5.

The second set of equations in (4.18) delimits ¢, ¢, -+ in terms of ¢g and r. If
q(r="k)#0for k=1,2,---, then
—Ck—1
e : k=1,2,---).
T a(r+ k) ( )
Then
k=1 ¢ =
R TCEY
—C1 Co
k= 2, C = =
2 q(r+2) q(r+1)qg(r+2)
k=3, c3 = 2 —«

q(r+3)  q(r+1)q(r+2)q(r+3)
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A G o (=)"co
n qir+mn)  q(r+1)g(r+2)---q(r +n)

(=)"co
n general, for k we have ¢, P PSS P P B ey (k=1,2,--+)

If r; =0, then q(r; + k) = q(k) #0 for k=1,2,---.
Ifr2:%l,thenq(m—i-k):q(%l+k)7é0f0rk:1,2,~~.

2 2 2 (-)¥eq :
Now ¢(z) = 2" Y cpa® = cox™+ Y ™ = cox”+ "t
() =7 2 e = a2 e T Dar 12 alr + B)

Letting ¢o = 1 and r = r; = 0 we obtain, a solution ¢; given by

e (et
N@) =1+ 2 @) alh)

Letting ¢ = 1 and 7 = 1, = 5~ we obtain, a solution ¢ given by

B 3 00 (_)kxk

po(z) = 2712 4 2712 Y
Zralk = 3)a(k—3) - q(3)

These functions ¢q, ¢, will be solutions provided the series converge on some

interval containing x = 0. Let us write the series for ¢; in the form
[e.e]
¢1(x) = 32 di(x).
k=0

Using the ratio test we obtain

din(@)| ol |z|
dy. () gk + 1) (k+1)(k+3)

provided |z| — oo. Thus the series defining ¢; is convergent for all finite 2. The

—0as k — o0

same can be shown to hold for the series multiplying ~/? in the expression for ¢s.
Thus ¢4, ¢ are solutions of (4.16) for all z > 0.

To obtain solutions for x < 0 we note that all the above computations go through

if 2" is replaced everywhere by |z|", where
|z|" = erloslel, (4.19)

Thus two solutions of (4.16) which are valid for all = # 0 are given by

(~)ka*
(Da(2)-ak)
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an r) =a"1? 3 (=)
! ) = S DG D)

Note that the definition (4.19) implies that |x|'/? is the positive square root of |z|.
It is clear that ¢, @9 are linearly independent on any interval not containing x = 0.
For, let 29 = 0. Then ¢1(x0) =1, ¢2(x9) = 0 and ¢ (xg) =0, ¢h(zo) = 1.

Therefore W (¢, ¢2) = 1 # 0 and so ¢ ¢ are linearly independent.
Exercise:
1. Find the singular points of the following equations, and determine those which
are regular singular points:
(a) 22y + (x+ 2%y —y=0 (b) 322%y" — 5y’ 4+ 32%y =0
(c) (1 —a?)y" — 22y +2y =0 (d) zy" +4y =0

2. Compute the indicial polynomials and their roots for the following equations:
(a) 2%y" + (x +2%)y' =y =0 (b) 2%y" + 2y’ + (2> = )y =0

4.4 Second order equations with regular singular

points - the general case

Theorem 4.6. Consider the equation

2*y" + a(x)zy + b(x)y = 0,

where a,b have convergent power series expansions for |x| < ro, ro > 0. Let r —
1,79 (Rery > Rersy) be the root of the roots of the indicial polynomial
q(r) =r(r—1) 4 a(0)r + b(0).

For 0 < |x| < 1 there is a solution ¢1 of the form

$1(x) = [z 30 era® (co=1),
k=0

where the series converges for |x| < ro. If ri — o is not zero, or a positive integer

then there is a second solution ¢y for 0 < |x| < rq of the form
$a(z) =[] 3° @™ (o =1),
k=0
where the series converges for |x| < r.

The coefficients ¢, ¢, can be obtained by substitution of the solutions into the
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diferential equation.
Proof. Consider the equation
2%y + a(x)zy + b(z)y = 0,

Suppose we have a solution ¢ if the form
x)=2a" chxk (co #0,)
k=0

for the equation (4.20) where

= i": agx”, b(x) = iﬁwk
k=0 k=0

for |x| < ry. Then

o0

(4.20)

(4.21)

(4.22)

() = Z(k + r)epat Tt = gt Z(k‘ + r)cpat
k=0

k=0

¢"(r) = Zk+r (k+ 71— 1)cpattr=2

k=0

= ' 22 E+7) (k47— 1)cpa®
k=0

b(x)p(z) = (Z ) <Z akxk> =z’ Zﬁkxk,

ra(z)g'(x) = = (Z ozkmk> x" (Z(k - T)Ck:L‘k)

k=0

where @ = Z(] +7r)cia—;

J=0

¢ (x) = xrz k+7)(k+r—1)cpa”.
k=0
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Then L(¢)(z) =a" > [(k+7)(k+7 — D)ep + ay + B 2,
k=0
and we must have [(k+7)(k+7— 1)+ @+ B8] =0, k=0,1,2,---.

Then using the definition of @, 3,, we can write

k k
(k+r)(k+7r—1Dep+ > (G +7r)cjan—; + > ¢jfr—j =0
. P

j=0

(k) (k7 — 1) + (k + r)ao + fol e + 2 G+ r)on + Bosl ¢ = 0.

Then for £ = 0 we must have
r(r—1)+rag+ fo =0, (4.23)

since ¢y # 0. The second degree polynomial ¢ given be
q(r) =r(r—1) +rag+ fo

is called the indicial polynomial for (4.20), and the only admissible values of r are
the roots of q. We see that

qlk+r)ep +dp =0 (4.24)
where
k—1 k—1
de =Y (G+r)cionj+ Y ¢y, k=12 (4.25)
§=0 =0
Note that dj is a linear combination of ¢y, cq,--- ,cx_1 with coefficients involving

the known functions a, b, and r. Leaving r and ¢y indeterminant for the moment we
solve the equations (4.24), (4.25) successively in terms of ¢y and r. The solutions
we denote by Ck(r), and the corresponding dy, by Di(r). Thus

_ _ =hln)
Di(r) = (ran + Bi)co,  Ci(r) = 1)
and in general
k-1
Di(r) = p_ 1 +r)aw—j + Bey] C5(r), (4.26)
Ci(r) = — Di(r) (k=1,2,--+) (4.27)
q(r+k)’ o ' '

The C}, thus determined are rational functions of r (quotients of polynomials), and
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the only points where they cease to exist are the points r for which ¢(r + k) = 0 for

some k =1,2,---. Only two such possible points exist. Let us define ® by
O(z,7) = cox” + " Z C(r)a. (4.28)
k=1

If the series in (4.28) converges for 0 < z < 9, then clearly
L(®)(z,7) = coq(r)x". (4.29)

We have now arrived at the following situation. If the ¢ given by (4.21) is a solution
of (4.20) then r must be a root of the indicial polynomial ¢, and the ¢; (k > 1)
are determined uniquely in terms of r and ¢ to be the Cy(r) of (4.27), provided
q(r+ k) #0, k= 1,2,---. Conversely, if r is a root of ¢ and if the Cx(r) can
be determined (that is, g(r + k) # 0 for k = 1,2,---) then the function ¢ given
by ¢(x) = ®(x,r) is a solution of (4.20) for any choice of ¢y, provided the series in
(4.28) can be shown to be convergent. 1(z) = zl Let r1,ry be the two roots of g,
and suppose we have labeled them so that Rer; > Rery. Then ¢(r1 + k) # 0 for any
k=1,2,---. Thus Cy(rq) exists for all k =1,2,---, and letting ¢g = Co(r1) = 1 we
see that the function ¢, given byOo

$1(z) =™ - Ci(r)a®,  (Co(r) =1),
k=0
is a solution of (4.20), provided the series is convergent.

If 1 is a root of ¢ distinct from r1, and g(ro+ k) # 0 for k = 1,2, - - then clearly
C(rs2) is defined for k = 1,2,---, and the function ¢, given by

bo(z) = 2™ é Ci(ra)a®,  (Colra) = 1),

is another solution of (4.20), provided the series is convergent. The condition
q(r+k)#0for k=1,2,---

is the same as 71 # 1o + k for k=1,2,---, or ry — ry is not a positive integer.

Noting that since ap = a(0), By = b(0), the indicial polynomial ¢ can be written
as q(r) =r(r—1) +a(0)r 4+ b(0). O
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4.5 The exceptional cases

We divide the exceptional cases into two groups according as the roots 7, ro(Rer; >
Rers) of the indicial polynomial satisfy

(1)ry = 1o (14)r1 — 7o is a positive integer.

We try to find solutions for 0 < z < r¢. For such z we have from (4.28), (4.29)

O(z,1) = cox” + " Z Cy(r)a. (4.30)
k=1
where ® is given by
L(®)(z,7) = coq(r)x". (4.31)

The Cy(r) are determined recursively by the formulas

C()(T) = (o 7é0
q(r+k)Cy(r) = —Dy(r), (4.32)

where Dy (r) = kg: [+ 7)ak—j+ Be—j] Ci(r), (k=1,2,--+);

In case (i) we have ¢(r;) = 0, ¢'(r1) = 0, and this suggests formally differentiating
(4.29) with respect to 7. We obtain

%L(@)(m,r) =L (g—f) (z,7) = co[¢'(r) + (log x)q(r)] ="

and we see that if r =ry =ry, ¢g = 1, then

0P

P2(x) = g(l’ﬂ“l)

will yield a solution of our equation, provided the series involved converge. Com-

puting formally from (4.28) we find

po(z) = 2™ Z C,;(rl)xk + (log x)z"™ Z C’k(rl)xk

k=0 k=0
= 2" ) Ci(r)7* + (log z) ¢ ()
k=0

where ¢ is the solution already obtained:
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61(z) = 27 é Crlr)z*,  (Colr) = 1.

Note that C}(ry) exists for all £ = 0,1,2,---, since C}, is a rational function of r
whose denominator is not zero at r = 1. Also Cy(r) = 1 implies that C{(r1) = 0,

and thus the series multiplying 2™ in ¢, starts with the first power of z.

Let us now turn to the case (ii), and suppose that r; = ro+m, where m is a positive
integer. If ¢( is given,

Ci(ra), -+ emo1(rs)

all exists as finite numbers, but since
q(r +m)Cp(r) = =Dy (r), (4.33)

we run into trouble in trying to compute C,,(r1). Now ¢(r) = (r — ry)(r — r2), and

hence q(r +m) = (r — ro)(r + m — ry).

If D,,(r) also has r — 1y, as a factor (i.e., D,,(r1) = 0) this would cancel the
same factor in ¢(r + m), and (4.33) would give C,,(r1) as a finite number. Then
Cma1(r2), Cmaa(ra), -+ all exists. In this rather special situation we will have a

solution ¢y of the form
da(x) = 2™ Y Crlra)z®,  (Co(ry) = 1).
k=0
We can always arrange it so that D,,(r;) = 0 by choosing Cy(r) = r — rs.

From (4.32) we see that Di(r) is linear homogeneous in Cy(r), - ,Cj_1(r) and
hence Di(r) has Cy(r) = r — o as a factor. Thus C,,(r2) will exists as a finite

number. Letting

(x,r)=2a" Z Cr(r)a”, (Co(r) =1 —r19), (4.34)
k=0
we find formally that
L(p)(z,r) = (r —ra)q(r)z” (4.35)
Putting r = ry we obtain formally a solution ¢ given by (z) = ¥(z,rs).

However Cy(r2) = Cy(re) = -+ = Cp_1(r2) = 0. Thus the series for ¢ actually
starts with the m—th power of x, and hence ¢ has the form

() = 2o (r) = 2" o(x),

where o is some power series. It is not difficult to see that ¢ is just a constant
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multiple of the solution ¢; already obtained. To get a solution really associated

with ro, we differentiate (4.35) with respect to r, obtaining

L = (5 @

= g()a" + ( — ) [¢(r) + (logw)q(r)] 2"

Now letting » = ro we find that the ¢, given by

6a(2) = S (2,r)

is a solution, provided the series involved are convergent. It has the form
$a(z) = 2 37 Cp(r2)a” + (logz)ay 3 Clra)a®,
k=0 k=0

where Ci(r) = r — ro. Since Cy(ry) = -+ = Cp_1(r9) = 0, we may write this as
o0

Ga() = a5 Y- Cp(ra)a* + c(log x) ¢ (2),
k=0
where ¢ is some constant.

The method used in this section to obtain solutions is called the Frobenius method.
All the series obtained converge for |z| < rg. Similarly the solutions for x < 0 can

be obtained by replacing x™, 272, log x everywhere by |z|™, |x|™, log |z| respectively.

Theorem 4.7. Consider the equation

2%y + a(x)zy + b(z)y = 0,

where a,b have convergent power series expansions for |x| < ro, 1o > 0. Let r —
1,79 (Rery > Rersy) be the root of the roots of the indicial polynomial
q(r) =r(r—1)+a(0)r + b(0).

If ri = ry there are two linearly independent solutions ¢y, po for 0 < |z| < 1o of the
form

¢1(z) = [z["o1(z),  ¢a(z) = [z|"Hoa(2) + (log |z|)¢n (),
where 01,09 have power series expansions which are convergent for |x| < ro and

71(0) # 0.

If r1 — ro is a positive integer then there are two linearly independent solutions
o1, ¢o for 0 < |z| < 1o of the form

¢1(x) = |z[Mo1(x),  @a(x) = |2[?02(x) + c(log |z[)dr (x),

where 01,09 have power series expansions which are convergent for |x| < ro and
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01(0) # 0,05(0) # 0, and ¢ is a constant. It may happens that ¢ = 0.

Exercise:

1. Obtain two linearly independent solutions of the following equations which are
valid near z = 0:

(a) 2%y +3zy’ + (1+2)y =0 (b) 2%y + 22%y — 2y =0

(c) 3x2y" + 5xy’ + 32y =0 (d) 2%y + 2y + 2%y =0

4.6 The Bessel equation

If a is a constant, Re a > 0, the Bessels equation of order « is the equation
22y + a2y + (22 — a?)y = 0.
This has the form
2*y" + a(z)zy + b(x)y = 0.
with a(z) =1, b(x) = 2?—a?. Since a,b s are analytic at = 0, the Bessel equation
has the origin as a regular singular point. The indicial polynomial ¢ is given by
qir) =r(r—=1)+a(0)r +b0)=r(r—1)+r—a?>=r*—a?
whose two roots rq, 7y are

rn =aa«, T9=—0Q.

We shall construct solutions for x > 0.

Bessel equation of order zero

Let us consider the case a = 0 first. Since the roots are both equal to zero in this

case it follows from Theorem 4.7 that there are two solutions ¢, @5 of the form
P1(z) =01(x),  Pa(x) = 2o2(x) + (logx)ds (2),

where o1, 09 have power series expansions which converge for all finite z. Let us

compute o1, 0a.

Now consider L(y) = 2?y” + 2y’ + 2%y and suppose

o1(z) = i cp 2%, (co #0)
k=0

We find
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k=1
ol(x) = Zk‘ (k—1) ¢ 272
k=2
and hence
2 ol(z) = Zk (k—1) ¢ 2"
k=2
xoy(x) = Zk e ¥ =c I+Zk cp z”
k=1 k=2
2 o (z) = ch aht? = ch,g z"
k=0 k=2
Thus L(oy(x)) = > [(k (k—1) + k) g + cxo] 2F + ¢ 2 = 0.
k=2

Then we see that ¢; =0, and (k (k— 1)+ k)cx +cx2=0for k=2,3,---.

—Ck—2 —Ck—2

= for k=2,3,---.
k(-0 +k k2 s
Let ¢ = 1. Then for k =2,3,--- we have

Then ¢, =

—Cp —1
k=2 @ = 5=%

—Cy 1
S L

—Cy —1
=6 & = 5 “3pe

(=™
2242 62 .- (2m)?

Since ¢; = 0, we have ¢3 = ¢5 = --- = 0. Thus oy(x) contains even powers of x and

In general, ¢y, = form=1,2,---.

we obtain | )
0o (—1)m p2m
o) = 5 CD

= 22m (ml)2

where as usal 0! = 1, and 2° = 1. The function defined by this series is called the
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Bessel functionm of eero order of the first kind and is denoted by Jy. Thus

- £ G - S )

an+1
a, |

Note: (Ratio test) Suppose we have the series Y a,. Define L = lim

n—oo

Then if L < 1 the series is absolutely convergent (and hence convergent).

It can be checked by the ratio test that this series converges for all finite . We
now determine a second solution ¢o for the Bessel equation of order zero. Letting
¢1 = Jo this solution has the form

oo () = i e 7 + (logz) du(x),  (cp =0).
We obtain

oh(x) = i k¢, aF

Py(x) = Zk( 1) cp x
Thus

1+M+(log:c) ¢ (2),
ez 9251( )

+ ¢1() (log z) ¢ ().

L(go)(x) = 2?¢5(x) + x¢y(x) + 2% o ()
= Zk k—1) cp 2 — ¢1(2) + 22¢)(z) + (log z)2* ¢ (2)

—i—Zk cr ¥ + ¢y (x) + (log z) ) (2 —1—20 ¥ 4 (log 2)2% ¢y ()

k=1

= Zk k—1) ¢ x —|—clx—|—chka¢ +ch A

k=2 k=2

+2x¢1( ) + (log z) (2”4 (x )+x¢’1( )+f€2¢1( )

= Zk k—1) ¢ x —|—clx—|—chkm +ch A

+2xq§1( ) + (log ) L(¢1)(x)
= [(k (k—1)4+k) cp + crs] o + 1o+ 22¢)(x), since L(¢y)(z) =0

Since L(¢9)(z) = 0, we have
ax+ 3 [k cp + cps] F = =22 (x) = -2 > ~—
— m=1
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Hence by equating coefficient of = we have ¢; = 0. Since the series on the right

side has only the even powers of z, we have c3 =c5=---=0.

The recursion relation for the other coefficients is

(=) (m)a
22m—2(ml)2

(2m)? com + Com—2 = (m=2,3,--+)

1
Then we have ¢y = —
92

1 1 1 1 1+1
Cp = — _— — — = — —
T2\ 2 992 92 42 9

17 1 1+1 . 11 1 1+1+1
67 62 |22 42 2 22 423 | 22 42 62 2 "3)

and it can be shown by induction that

<_WW11+1+1+ +1 h 1.2
Com = ——F— -+ =-4+---+ — ) wherem=1,2,---.
M 92m ()2 23 m

The solution thus determined is called a Bessel function of zero order of the second
kind, and is denoted by K,. Hence

Ky (z) = — 5 & (1 PR S i) (fm) + (log ) Jo ().

m=1 (m')2 2 3 m 2

Using the ratio test it is easy to check that the series on the right is convergent

for all finite z.
Bessel equation of order o

Now we compute solutions for the Bessel equation of order a, where a # 0 and
Re a > 0:
L(y) = 2%y + zy' + (2* — a*)y = 0.

Let x > 0. The roots of the indicial polynomial are r; = a, 79 = —qv.

First we determine a solution corresponding to the root r; = a. The solution ¢

has the form

o1(z) = x* ick ", (co #0).
k=0

That is ¢ (z) = > ¢ 2FTe.
k=0
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o0

@) = Y (athk) e att!
k=0

I(x) = Z(a + k) (a+k—1) ¢ a>TF2
k=0

2 ¢l(x) = Z(a + k) (a+k—1) ¢ >
k=0

T ¢y(x) = Z(oz + k) ¢ x°TF

k=0

(22 —a?)p1(z) = 2’¢1(x) — Py ()

[e.9] (0.9}
_ Z o 2OTRF2 _ 2 ch otk
k=0 k=0

o0 o0
_ } :C’%Q xa+k i &22 :Ck xo‘+k
k=2 k=0
Then

(a+E)(a+k—1)+ (a+ k)] ™™™

=
=
=
[
M8

B
Il

0

o (0.0
+§ :Ck—Q $a+k o Oé2 § :Ck :L.oc-i-k
k=2 k=0

_ Z [(O./—I— k)? N &2} Ckl'a+k +ch_2 l,oc-‘rk
k=2

o]
k=

N O

= (o —a®)cez® + ((a+1)* — a®)cy 2t

+ Z {[(a+ k) —a?] ek + cpo} 2t

k=2

Since L(¢)(z) =0, ¢; =0 and [(a + k)*> —a?]cxy + o =0for k=2,3,---.

—Ck—2 —Ck—2

Therefore ¢, = = , since k(2a+ k) # 0 for k=2,3,---

(a+k)?2—a2 kQa+k)

Since ¢; =0, c3 =c5="---=0. Then for k =2,3,--- we have
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—Co —Co

k == 2 = —=
C 2 T 2at2) 2(a+1)
L 4 —Ca Co Co
= C = = =
o 42a+4)  2(a+1)28(a+2) 212(a+1)(a+2)
k = 6, Cg — — — ‘o

6(2a+6) 242 (a+)(a+2)12(a+3) 263 (a+ 1)(a+2)(a+3)

(=)™ c
22 m! (a+ 1) (a+m)

Thus our solutions becomes

In general, we have ¢y, = where m =1,2,---.

> (_1)m :L.2m
= coz® @ 4.36
¢1(x) = cox” + cox n;zzm ml (@t 1) (a+m) ( )
For a = 0, ¢g = 1, this reduces to Jy(z).
It is usual to choose
! (4.37)
T Tt '

where I' is a gamma function defined by

(z) = [e*z*'dz, (Rez>0)
0

Then it is clear that I'(z + 1) = zI'(2). Indeed by applying integration by parts,
we have Gamma(z + 1) = [ e *a*dx. Taking u = 27, dv = e *dz we have du =
0

—T

22"z, v=—e

Then

o0

I'z+1) = [—xze_ﬂzo—i—/e_xzxz_ldx

0
o)

= 0+ z/ezazZIdx
0
= z2I'(2)

Also I'(1) = 1. If z is a positive integer n, then I'(n 4+ 1) = nl.
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Thus the gamma function is an extension of the factorial function to numbers

which are not integers.
Suppose N is a positive integer such that —N < Rez < —N+1. Then Re(z+N) >
0 and we can define I'(z) in terms of I'(z + N) by

I'(z+ N)
2(z+1)---(z+ N —1)

['(z) = , provided z # —N + 1

Now,

(1" a2

(a+1)---(a+m)

¢1(z) = cox® + o ;2% o

7% — (—1)™ x?m
20 I+ 1) +2_0‘Z22m m! (a+1)---(a+m)(a+1)

m=1

Since from the definition of I'(z) we have

I'(z+ N)
T(z) —
&)= o3 e N =D
Therefore we have
r 1+ N
Mla+1) = (a+1+N)

(a+1)(a+2)---(a+ N)
MNa+1+N) = (a+1)(a+2)--(a+ N)I'a+1)

Hence
x® 1% (=™ a®m
¢1(z) = 2 T(atl) Qamzlgzm ml (@+1)- (a+m)(a+1)
o a X —1\ym 2m
_ x n = Z (-)" =
20 D(a+1) 20 &= 22m m! T(a+m + 1)
o o0 (_1)m x2m

Q_Qm:o 22m m! Na+m+1)

This is denoted by J,. That is
T\ (=)™ x\2m
Jalz) = <§> Z m! T'(a+m+1) (5) '

m=0
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Notice that this formula for Ja. reduces to Jy when oo = 0, since I'(m + 1) = ml.
There are now two cases according as r; — ry = 2« is a positive integer or not.

Case 1: If r; — ry = 2« is not a positive integer, by Therem 4.6 there is another

solution ¢y of the form
Go(z) = 27 cpa®
k=

We find that our calculations for the root ro = —a is same as r; = « provided

that we replace a by —a everywhere. Then

T-ale) = (g) h Z) ml ré;l_)z +1) @)m

gives a second solution in case 2« is not a positive integer.

Case 2: r; — r9 = 2« is a positive integer if « is a positive integer say a = n. By

Theorem 4.7, there is another solution ¢ of the form

o0

bo(r) = Z ™" 4 c(log ) J, (2)

) = Sk~ maat + elloga)Jy () + 2
k=0

a(r) = Z(k: —n)(k—n—1)cz""? + c(logx)J (z)
k=0
() | ) o)

2oy (z) = Z(k —n)(k —n — 1)z " + c(log x)z* J! ()
+exJ) (x) + cxJ) (x) — ey (x)
rPy(x) = Z(k —n)epr™ " + c(log z)xJ. () + e, ()

(22 —n?H)go(x) = Z et 2 Z ez + c(log ¥)(2* — n?)J,(z)
k=0 k=0
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L(ga)(x) = 2°¢h(x) +xdy(x) + (2% — n*)da(2)

= [(k—n)(k—n—1)+ (k—n) —n’] " + c2®J!(2)(log x)

+2cxJ) (z) + cx(logx)J), (x) + Zc 282 (2% — n?)e(log x)J, ()

= (n*=n?)coz ™" + [(1 — n)* — n®] 12" " + 2ca ) (2)
+3° [l = n)? = )cr + g) 57 + cllog 2 L(Ja(a)
= (0)cor™" + [(1 = n)*> = n?| a1z’ ™™ + 2ca ) (2)

+ Z [((k—n)> = n?)c, + cp_o] 2™, since L(Jn(z)) =0,

Since L(¢2)(z) = 0, we have on multiplying by z"

2"(0)coz™ + [(1 — n)? — n? cpxt 2™ + 2ca™ T (2)
k-

o]

+ 2" 3 [((k —n)? —n?)cp + o] x

(0)co + [(1 —n)? —n?|ciw + i [((k —n)? —n?)cg + cpo] 2% = —2ca™ LT’ (2)

n:O

) B 00 (_1)m T\ 2m+n
Since J,,(x) 77712230 P T+ m 1) <2> , we have

(o] (_1)m(2m+n)x2m+n—1

Ju(@) = 22

m=0 22"*trm! T'(n +m + 1)

Therefore

00 2m + 2n) 2m+n
k
(O)CO -+ (1 — Qn)CﬂJ + g [k(k - 2n)ck + Cka] xz = —2c Z 22m+nm| P n +m + 1)

k=2

_ _202(2m+n) d2m$2m+2n
m=0

(4.38)

where .
(—1)

22mtnml(m 4 n)!

oy = (4.39)

since '(n+m+1) = (n+m)!.
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The right hand side of above series (4.38) begins with 22", and since n is a positive
integer we have ¢; = 0. Further if n > 1,
k(k —2n)c, + cx—2 = 0, (k=2,3,---,2n—1),

and this implies ¢c3 = ¢5 = - - - = ¢9,,_1 = 0, whereas
Co Ca

2n—1) AT 2Am-1)n-2)

Cy =
and in general

T2l -2)- ()

CQj

Comparing the coefficient of z°" in (4.38) we obtain

Cop—2 — —20nd0 = m

On the other hand from (4.39) it follows that
Co

=1 = 91 — )i — )0

and therefore

Co

= 5T (4.40)

C

Since the series on the right side of (4.38) contains only even powers of = the same

must be true of the series on the left side of (4.38), and this implies
Cont1 = Copgz = -+ = 0.
The coefficient ¢, is undetermined, but the remaining coefficients cs,, 12, Conia, - - -

are obtained from the equations
2m(2n + 2m)cantom + Contom—1 = —2¢(n + 2m)day,, (m=1,2,--+)

For m =1, we have
Cdg 1 Con
1= ——— (1 _
Cont1 = 779 ( +n—|—1) An+1)

We now choose ¢y, so that

Con _Cd2 1+1+ +1
dn+1) 2 2 n

Since 4(n 4 1)dy = —d,

S P
“n =7 2 7

With the choice of ¢s,, we have
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Cdg 1 1
Coant2 = — - 1+1+2+ +n—|—1

For m = 2 we obtain
cdy n 1 Con+2
Copaa = —— | = —
2 2 \2 n+2) 2°2(n+2)

Since 2" 2 (n + 2)dy = —do,

Cont2  _ Cdy 1 1
—_ 141
2"2(n+2) 2 ( * +2+ +n+1>
and therefore
cd4 1 1 1
Contda = — o5 1+2+1+2+ +TL—+2

It can be shown by induction that

cdap, 1 1 1 1
- _ 1+ 4...— 14+ = 4-... —1.2. ...
Cont2m 5 {( +2+ m)—l—( —1—2—1— +n+m)}’ (m ,2, )

Finally, we obtain for our solution ¢,, the function given by

> % cdg 1 1
— -n —-n 1+ 2
e = Zzw.<n—1>~-<n—j> > (rgrei)e

j=1

1 1 1
m 2 n+m

(log I)Jn( );

where ¢y and ¢ are constants related by (4.40), and dy,, is given by (4.39). When

¢ = 1 the resulting function gbz is often denoted by K,. In this case
= —2""n - 1)!,

and therefore we may write

- 36) z@m L IO}
108>

1
2
w5 )] 6)
+(log z)J,(x)

This formula reduces to the one for Ky(x) when n = 0, provided we interpret the
first two sums on the right as zero in this case. The function K, is called a Bessel

Mg

funclion of order n of the second kind.
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Properties of Bessel function

d

Proof: We know that

Ja(w):<g>a2)m'F((oz_i):l+l ( > Z ! oz+m <

aw = Yy

0 (_1)m p2m+1

- Z [ [ 92m+1
= m! (m+1)! 22+

Then
(_1)m (2m) p2m—1
(=1)™* (2(m 4 1)) x2m+D—1
(m+1)! (m+ 1)! 22(m+1)
(=)™ (=1) (2(m + 1)) 2*"+!
ml(m+1) (m+ 1)! 22m+2
(—1)m p?m+l
2= (m)! (m + 1)1 224D
- 1(£E)

Q.|&
&
=N
=

|
[~]e

3
n

[
Mg

0

3
Il

[
Mg

0

3
I

I
]2

2. J_o(z) = (=1)* Jo(x).

Proof: We know that (—1) ot
e —_1\ym €T m+ao
Jolr) = 2 (3)



Jalr) = 3 Ty

m=om! (m—a)! \2
For m=0,1,2,--- ,a—1, (n — a)! is £oo. Therefore

- £ )

meam! (m—a)! \2

Tale) = 55 ()

n=o (n+a)l nl \2

Put m — a = n,

That i rata) = 1 £ T (5)

Hence J_,(x) = (—=1)* Ju(x).
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Chapter 5

Existence and uniqueness of

solutions to first order equations

5.1 Introduction

Consider the general first order equation

y = fz,y) (5.1)

when f is some continuous function. Now we consider one special case namely the

linear equation.

5.2 Linear equation

Consider the linear equation

y' + g(x)y = h(x), (5.2)

where g, h are continuous on some interval /. Any solution ¢ if (5.2) can be written

in the form

() = e~ Q@) /eQ(t)h(t)dt + ce Q@) (5.3)

o
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where Q(z) = [ g(t)dt,
xo
xo is in I and c is a constant.

Example 5.1. Consider the linear equation
Y +ay = e /2
Here g(x) = x and h(z) = e*"/2.Then
2
Q(z) = [g(x)dz = [ xdx = %

Therefore

y = e‘Q(m)/eQ(”’)h(x)dx—l—ce_Q(f”)

= e‘xQ/Q/ (e‘c2/2> (e‘x2/2> dx + ce™™

—r2 2
w/2x+ceaz/2

y = e Pa+o)

= €

Example 5.2. Consider the linear equation

Yy —ycotx =2xsinx

Here g(z) = — cot x and h(z) = 2z sin x.Then
Q(z) = [g(x)dz = — [ cotwdz = —log(sinx)
Therefore
y = ¢ @@ / e?On(z)dx + ce 9@
elog(sine) / (—log(sinz)) (2 sin z) dx + ce'°sn)

1
= sinx/( : >(2xsinx)da:+csina:
sin

= (sinz)(2?) + csinx

y = (sinz)(2*+c)

If f is not a linear equation there are certain limitations which must be expected

concerning any general existence theorem. To illustrate this consider the equation
y/ — y2

Here f(x,y) = y? and we see f has serivatives of all orders with respect to z and
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y at every point in the (z,y)— plane. A solution ¢ of this equation satisfying the

1
initial condition ¢(1) = —1 is given by ¢(x) = ——. However this solution ceases
to exist at x = 0 even though f is a nice function there. This example shows that
any general existence theorem for (5.1) can only assert the existence of a solution

on some interval near-by the initial point.

The above phenomenon does not occur in the case of the linear equation (5.2), for
it is clear from (5.3) that any solution ¢ exists on all of the interval I. This points
up one of the fundamental difficulties we encounter when we consider nonlinear

equations. The equation often gives no clue as to how far a solution will exist.

We prove that initial value problems for equation (5.1) have unique solutions which
can be obtained by an approximation process, provided f satisfies an additional
condition, the Lipschitz condition. We first concentrate our attention on the case
when f is real-valued, and later show how the results carry over to the situation

when f is complex-valued.

Exercise:
Find the solution for the following equation.
(a) 14+ 2%y +y=tan'x (b) ¢ + ysecx = tanx

5.3 Equations with variables separated

A first order equation

y = [f(z,y)
is said to have the variables separated if f can be written in the form
9(x)
f x,y)—,
i)
where g, h are functions of a single argument. In this case we may write our equation
as
dy
hy)o =9lx) or hy)dy = g(v)dz (5.4)

Let us discuss the equation (5.4) in the case g and h are continuous real-valued
functions defined for real x and y respectively. If ¢ is a real-valued solution of (5.4)

on some interval I containing a point xy then

h(o(x))¢/ () = g(x)
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for all z in I and therefore

/ h(6(1)) (H)dt = / g(t)dt (5.5)

for all z in I. Letting u = ¢(t) in the integral on the left in (5.5), we see that (5.5)

may be written as
[ h(u)du = [ g(t)dt
é(wo) o

Conversely, suppose = and y are related by the formula

xz

/y h(u)du = / g(t)dt (5.6)

Yo To

and that this defines implicitly a differentiable function ¢ for z in I. Then this

function satisfies
o(x)

[ h(u)du = fg(t)dt

Yo @0
for all z in I, and differentiating we obtain h(¢(x))¢’(x) = g(z), which shows that
¢ is a solution of (5.4) on 1.

The usual way of dealing with (5.4) is to write it as h(y)dy = g(z)dz (thus
seperating the variables) and then integrate to obtain

[ h(y)dy = [ g(x)dz + ¢,
where ¢ is a constant and the integrals are anti-derivatives. Thus
H(y) = [ hy)dy, G(z)= [g(z)dz,
represent any two functions H,G such that H' = h and G' = ¢g. Then any
differentiable function ¢ which is defined implicitely by the relation

H(y) =G(z)+¢ (5.7)

will be the solution of (5.4). We summarize in the following theorem.

Theorem 5.3. Let g, h be continuous real-valued functions fora < x <b,c <y <d

respectively and consider the equation
h(y)y' = g(x)

If G, H are any functions such that G' = g and H' = h, and c is any constant
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such that the relation
H(y) =G(z)+c¢
defines a real-valued differentiable function ¢, for x in some interval I contained

ina <z <b, then ¢ will be a solution of (5.4) on I. Conversely, if ¢ is a solution
of (5.4) on I, it satisfies the relation H(y) = G(x) + ¢ on I for some constant c.

Remark 5.4. Consider the equation y' = %
Case 1: Let h(y) = 1. Then
y = g()
% = g()
dy = g(r)dz
y = g(x)dx

Every solution ¢ has the form ¢(z) = G(x) 4+ ¢ where G(z) = [ g(z)dx and ¢ is a
constant.

Case 2: Let g(x) = 1. Then

;o 1

YT )
dy 1
dr — h(y)
dr = h(y)dy

rT+c = /h(y)dy

Every solution ¢ has the form H(y) = x + ¢ where H(y) = [h(y)dy and ¢ is a

constant.
1

Example 5.5. Consider the equation y' = y*. Here h(y) = —;, which is not
)

continuous at y = 0. We have

dy
E :dx

dy
?:/d‘%’
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1
—— = T+cC

-1
x4+ c

This if ¢ is any constant, the function ¢ is given by
€Tr) =
o) = —

is a solution of the equation 3y’ = y? provided = # c.

Remark 5.6. It is important to remark that the separation of variables method of

finding solutions may not yield all solutions of an equation.

For example, it is clear from the above example that the function v which is
identically zero for all x is a solution of the equation. However, for no constant c
will the ¢ yield this solution.

Example 5.7. Consider the equation 3’ = 3y%/%.

1
Here h(y) = TR which is not continuous at y = 0. We have

dy
W = dzx
dy

[ = [
y1/3 = r+c

y = (z+c¢)?

This if ¢ is any constant, the function ¢ is given by
$(z) = (v +c)’

is a solution of the equation y’ = 3/ for any constant c

Exercise:
1. Find all real-valued solutions of the following equations:
(a) y = 2%y (b) yy' ==

T+ 22
©) Y =——3 (d) ¥ = 2?y* — 4a”
y—vy
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Homogeneous equation

Definition 5.8. A function f defined for real x,y is said to be homogeneous of
degree k if

f(tz, ty) =t* f(x,y) for all t, z,y.

Note: If f is a homogeneous function of degree zero then we have f(tz,ty) = f(x,y).

Definition 5.9. The equation y' = f(z,y) is homogeneous if f is a homogeneous
function of degree zero.

We consider a equation of the form

I~ gy = IEY)

where g, h are homogeneous functions of same degree. This equation can be reduced

to ones with variables separated.

To see this, let y = vz in ¢y = f(x,y). Then we obtain

W,
=vr=-—-=v+1r—
p Y d§ dx
= f(a.y) = v+ o = fle.vr) = f(1,v)
d 1,v) —
Hence v' = d_v = M which is an equation for v with variables separated.
T x
Then we obtain final solution by replacing v by g
x
Example 5.10. Consider the equation ¢y’ = Tty
r—y
d d
Let y = vx. Then d :U+ZU—U
dx dx
dv T+ vx
vV+r— =
dx T —vx
n 1+wv
vtar— =
dx 1—w
dv 1+wv
r— = -
dx 1—wv
dv 1+ v?
xr— =
dx 1—wv
1—w dx
— T dy = =
1oz x
1 1 2w _ dx
1+ v? 2142 oz



On integration we have

1
tan"'v — §log(1 +v?) = logz +c
2tan"'v = log(1+ v?) + loga? + ¢

2
2tan <g> = log (1 + %) (%) + ¢

T
2tan~! (£) = log (a? +y?) +
x
Exercise:

1. Find all real-valued solutions of the following equations:
2

Y
/!
(a) y xy + a2
z? + Ty + y2
(b)y' =—73—

Non-homogeneous equation

Consider the equation of the form
, mT+bhy+a

4 _a2x+b2y+cg

where a1, as, by, by, 1, ¢ are constants and ¢q, co # 0 can be reduced to homogeneous

equation.

Case 1:
If a1b5 = asb; then the substitution a;x + biy = v or asx + by = v reduces the

given equation to one in which the variables are separated.

Case 2:

If a1by # asby then the substitution z = X + h and y =Y + k where h and k are
such that a1h + b1k + c¢; = 0 and ash + bk + co = 0 reduces the given equation to a
homogeneous equation in X and Y. The final solution is got by replacing x and Y
by x — h and y — k respectively.

Example 5.11. Consider the equation @ = oyl
dr. z+4+y—3
Here a; = 1, by = =1, et =1, ao = 1, by = 1, ¢ = —3. Also a1b; = 1 and

asby = —1. Hence a1by # asbh;.

Put z =X +hand y=Y + k. Then dr = dX and dy = dY.
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Y
Therefore % = Z_X

Th Y X+h-Y—-k+1
n — —
A T X+h+YFk-3

Choose h, k such that h—k+1 = 0 and h+k—3 = 0. Solving these two equations

we have h =1 and k = 2.

dY X-Y
Therefore X X1v This is a homogeneous equation in X and Y.
dY dv
Put Y =vX. Then — = —.
u v endX v+a:dX
dv X —vX
X— = ——
VEAIX T X rox
dv 1—vw
X— =
vATY 1+
dv 1—vw
I— = -0
dX 14+
dv 1 —2v —v?
€r— =
dX 1+
14+ do - dX
1—2v —2 v X
1 —2(1+w) dX
_ - dv = ——
21— 20— 2" X

On integration we have

1
—Elog(l—Zv—UQ) = logz +logc

(1-20—2)"Y2 = ¢
1
= T
(1 —2v—0v2)1/2
1 2 2
(1—2v—10?) - at
1
(1—2v—v%)2* = 2=c
1
2
y_ vy
(1—2;—;)1‘2 = c

(2* =22y —y?) = ¢

Alsowe have r =X +h=X+landy=Y +k=Y +2.
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Then X =z —1land Y =y — 2.
Therefore (r — 1)2 —2(z — 1)(y —2) — (y — 2)* =¢
22+ 1 -2 —2xy+4r+2y—4—y  —4+4y=c
22 —2xy —y* + 20+ 6y =c+ 8 = cy.
Example 5.12. Consider the equation
dy  6x —4y+3
dr 3z —2y+1
Here ay = 67 b1 = —4, C1 = 3, [ 3, bg = —2, Cy = 1. Also a1b2 = —12 and
asb; = —12. Hence a1bs = asb;.
dy dv

Then substitute 3z — 2y = v. Also on differentiation we have 3 — 2d_ =
x x

dy 2(3z — 2y) + 3

dr —  (3z—2y)+1
dy — 2v+3
dr  wv+1
Therefore
2043 dv
3—2 = —
(v—i—l) dz
dv B 3v+3—4v—06
de v+1
dvv  —(v+3)
dr v+1
—U+1dv = dx
v+ 3
1 -2 2 2
Now,v+ _U+3 _v—|—3 1

v+3  wv+3  0+3 wv+3 = wv+3

—(1— 2 )dv:dq:
v+ 3

On integration we have

—v+2log(v+3) = z+c
—(3z —2y) +2log(3x — 2y +3) = z+c
2log(3x —2y+3) = 4o —2y+c
)

log(B3x —2y+3) = 2x—y+ay
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Exercise:

1. Find the solution of the following equations:
dy x+2y+3 dy v—y+3

= b B

(2) dr 2rx+y+3 ( >d:v 20 — 2y +5
dy 3y—Tz+7 dy z+y+1
©) e =373 (@) 2 =1
de 3rx—Ty—3 dr xz+y—1

5.4 Exact equations

Suppose the first order equation y' = f(x,y) is written in the form
M(z,y)
N(z,y)

/

y = -

Then
M(z,y) + N(x,y)y =0 (5.8)

where M and N are real-valued function defined for real x and y on some rectangle

R.

Definition 5.13. The equation M(x,y) + N(x,y)y’ = 0 is said to be exact in R if

there exists a function F' having continuous first partial derivatives such that

g—];:M and g—gzNinR (5.9)

Example 5.14. Consider the equation ydx + zdy = 0. Here M =y and N = z.

oF ,
Then there exists a function F' = xy such that Free y = M and %—5 =x = N.
x

Hence the given equation is exact.

Theorem 5.15. Suppose the equation
M(z,y) + N(z,y)y' =0 (5.10)

1s exact in a rectangle R and F' is a real-valued function such that

OF oF
— =M — =N A1
e and o in R (5.11)

Fvery differentiable function ¢ defined implicitly by a relation
F(z,y) =c (c= constant)
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is a solution of (5.10) whose graph lies in R arises this way.

F
Proof. Suppose M(z,y) + N(x,y)y’ = 0 is exact in R and g— = M and %—5 =N in
x
R.
Then aF('r?y) + 3F($,y)y, —0.
ox Jy

If ¢ is any solution on some interval I, then

OF(2,0(s)) , OF(x,0(x)
ox oy
If &(x) = F(x,$(x)) then
L
W)= 5+ S o) =0
That is ®'(z) = 0 and so ®(z) = ¢, a constant. Hence F(z, ¢(z)) = c.

¢'(x)=0forall z € 1.

Thus the solution ¢ must be a function given by F(z,y) = c.

Conversely, if ¢ is a differentiable function on some interval I defined by the

relation F'(x,y) = c¢. Then F(z,¢(x)) = c for all z € I.
Differentiating this we get

OF (z,¢(x))  OF(x, ¢(x)) ,

T oy ¢'(x) =0

Thus M (z, ¢(x)) + N(z,¢(x))¢' (x) = 0 Hence ¢(x) is a solution of (5.10). O

Remark 5.16. If M(z,y) + N(z,y)y" = 0 is exact then

M(z,y)dz+ N(z,y)dy = 0
—dr+ —dy = 0

Y
dFF = 0

Example 5.17. Consider the equation ' = —%. Then

dy x
dx Y
xdzx + ydy 0
z? + y?
d 0
(=)
z? + y?
&1
2
D T 2c1 =c¢



Thus any differentiable function defined by the relation 22 + y? = ¢, where c is a

constant is a solution of given equation.

Note: Consider the equation with variable separated. Any such equation is a special

case of an exact equation.

If we write equation M (z,y) + N(z,y)y’ =0 as

g(x)dx = h(y)dy

/g(w)dx = /h(y)dy

G(r) = H(y)

where G(z) = [ g(x)dr and H(y) = [ h(y)dy. That is G'(z) = g(x) and H'(y) =
h(y). It is clear that F' is given by F(z,y) = G(z) — H(y).

Theorem 5.18. Let M, N be two real-valued functions which have continuous first
partial derivatives on some rectangle
R: |z —z0l < a, [y—yo| <0

Then the equation
M(z,y) + N(z,y)y' =0

1s exact in R if and only if
oM  ON

= ' 12
oy e in R (5.12)

Proof. Suppose M (x,y) + N(z,y)y’ = 0 is exact in R. Let F' be a function which
has continuous second derivatives such that

oF oF
a—x = M and a_y = N.
Then
O°F _ 0 (0P _oM
oydr Oy \ oz ) Oy
#°F _ 0 (0F\ _oN
oxdy  Ox \dy ) O«
O*F O*F oM  ON
i — = —— fi f ion F' we have — = —.
Since gz~ 020y or a function F' we have 3y o
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oM  ON oF
conversely, suppose — = We need to find a function F' satisfying — = M
dy o ox
and 8_F = N.
dy

Suppose if we had such a function then

F(z,y) — F(zo,90) = F(z,y) — F(zo,y) + F(z0,y) — F(z0,%)

T Yy
B OF(s,y) OF (g, 1)
= / o ds + / 3y dt

::jM@m@+7meﬁ (5.13)

Similarly we have

F(x,y) — F(zo,90) = F(z,y) — F(z,y0) + F(2,5) — F(z0, %)

) x
B OF (z,t) OF (s, o)
= / a9y dt + / B ds
Yo o

Y T
_ /N(x,t) dt + /M(s,yo) ds (5.14)
Now we define F' by
T Y
F(z,y) = /M(s,y) ds + /N(mo,t) dt (5.15)
zo

From (5.15) we have F(a:o,yo = 0. Also

OF (z,y)
5~ 9 /Msy ds—i—/N:z:O, = M(z,y)

for all (x,y) in R.

From (5.14) we would guess that F' is also given by

Flo,y) = /M(s,yo) ds + /N(x,t) dt (5.16)
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Therefore OF(x,y) = 9 /M(s,yo) ds + /N(x,t) dt| = N(z,y)
Jy Jy

for all (x,y) in R. Thus we found our F.
In order to show that (5.16) is valid where F' is the function given by (5.15).

We consider the difference

F(z,y) — [styOds+watdt]

o Yo

- y . y -
= /M(s,y) ds+/N(m0,t) dt| — /M(s,yo) ds+/N(.¢c,t) dt
= /Msyds—/Msyg /N;z:tdt—/Nmo,

_ /(M(s,y) — M(s, 1)) ds—/(N(:r,t) — N(xo,t)) dt

Tz Yy Yy
_ //wdtds_//wdsdt
ot 0s

o Yo Yo To
_ //(8Mst 0N(s,t)) gt ds
0s
o Yo
o OM N
= 0, since 9y~ o

T Y
Therefore F(z,y) = [ M(s,yo) ds + | N(z,t) dt. This completes the proof. O

Zo Yo

Rules to find the solution of exact equations

1. Verify whether given equation M(z,y) + N(z,y)y = 0 is exact.
2. If exact, integrate M with respect to x keeping y as constant.

3. Find out those terms in N which are free from x and integrate those terms

with respect to y.
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4. The sum of these two expressions equated to an arbitrary constant is the

required general solution of given exact equation.

Example 5.19. Consider the equation

. 32— 2y
Y= —F% 5
x? — 2y

This equation can be written as (3z% — 2zy)dr — (z* — 2y)dy = 0. That is
(322 = 2zy)dx + (2y — 2*)dy = 0.
oM  ON

Here M = 32% — 22y and N = 2y — 22. Then — = —— = —2x. Hence the
oy ox

given equation is exact.

(32% — 2xy) dx

—

3z3 227y

Then integrating M with respect to x keepin y as constant we have
/ M dx =
32
3

= 23— 2%y

and S = the terms of N free from = = 2y. Then

/dez/?ydy:y2.

3

Hence 22 — 2%y + y? = c is the general solution of given equation.

Exercise:

Verify the following equations are exact and solve them.
(a) 2xy dz + (2? 4+ 3y?*) dy = 0

(b) 2%y® dx + x3y?* dy = 0

(c) (+y)de+(z—y)dy=0

Integrating factor
Consider the equation
M (z,y)dx + N(z,y)dy = 0. (5.17)

Sometimes the equation (5.17) may not be exact. So we find a function ‘e’ nowhere
zero such that
u(z, y)M(z,y) de +u(z,y)N(z,y) dy =0

is exact. Such a function ‘v’ is called an integrating factor.
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Example 5.20. Consider the equation y dr — z dy = 0.

Here M =y and N = —x. Then 8—M =1 and 8—N = —1. Therefore 8_M # 3_N
dy ox dy ox

and so the given equation is not exact.

1

When the equation is multiplied by — we get
)

ydr—xdy

y? ’

= — =0
Y

_r _ h 1 _
= Yy = — = cr where - =¢
C1 €1

That is y = cx. Thus the equation becomes exact. Hence the integrating factor
1

1S —-

)
Result:
1 fOM ON
1. If ¥ (8_y o) = g(x), a function of x only then pu = e/ 9 4 js an
integrating factor of M dx + N dy = 0.
1 (OM ON :
2. If i <8_y o) = (), a function of y only then p = e/P®) @ is an

integrating factor of M dx + N dy = 0.

3. If M de + N dy = 0 is a homogeneous equation where M and N are ho-
1
mogeneous function of degree n and if Mz + Ny # 0, then ——— is an
mx + ny
integrating factor.
4. If M dx+ N dy = 0 is of the form yf(zy)dz + zg(xy)dy = 0 where f(xy) #

1 : : .
g(xy) then ———— is an integrating factor.
mx — ny

Example 5.21. Consider the equation (2% + y* + z)dz + zrydy = 0.

M ON

Here — = 2y and — = y. Clearly the given equation is not exact.
dy ox

Then L (OM _ONY _y _ 1
N \ 0y ox xy T

Therefore the integrating factor is p = el 9@) dr — of sde _ glogz _ o
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Exercise:

Find an integrating factor for the following equation.
(a) (2y* + 2)dz + 3zy*dy = 0

(b) (5z*y? + 2y)dx + (3z*y + 2x)dy = 0

5.5 Method of successive approximations

Consider the equation
y = f(x,y) (5.18)

where f is any continuous real-valued function defined on some rectangle
R: |w—x0]§a, \y—yo\ﬁb, (a>b>0)7

in the real (z,y)—plane.

To show: On some interval I containing z there is a solution ¢ of (5.18) satisfying

¢(To) = Yo (5.19)

That is there is a real-valued differentiable function ¢ satisfying ¢(z9) = yo such
that the points (z,¢(x)) are in R for x in I, and ¢'(z) = f(z,#(x)) for all x in I.

Such a function ¢ is called a solution to the initial value problem

/

y = f(x,y), y(xo) =yo onl. (5.20)

We now show that the initial value problem is equivalent to an integral equation

namely

Y = Yo +/f(t,y) dt on I. (5.21)

Suppose ¢ is a solution to (5.21) on I with (z, ¢(z)) is in R, then
o(x) =yo+ [ f(t, (1)) dt
zo
where ¢ is a real valued continuous function on I.

Theorem 5.22. A function ¢ is a solution of the initial value problem y' = f(x,y),

y(zo) = yo on an interval I if and only if it is a solution of the integral equation

y=yo+ [ f(t,y) dt onI.

zo
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Proof. Suppose ¢ is a solution of the initial value problem ' = f(x,y), y(zo) = o
on I. Then

¢'(t) = f(t,9(1)) (5.22)

on I. Since ¢ is continuous on [ anf f is continuous on R, the function F' defined

by F(t) = f(t,¢(t)) is continuous on I. Integrating (5.22) from z, to x we obtain

T

j st = [ fow) d

Zo
T

(), = / £t (1)) dt

and since ¢(xy) = yo, we have

(@) = yo + [ F(t,6(t) dt

Hence ¢ is a solution of y = yo + [ f(t,y) dt

z0

Conversely, suppose ¢ is a solution of y = yo + [ f(t,y) dt on I. Then

Zo

o) = d(xo) + / 7t 6(t)) di (5.23)

On differentiating and using fundamental theorem of calculus, we have

o) = 1 [ 1(t.60) dt = (. 0(2))

Also from (5.23), we have ¢(zg) = yo.

Hence ¢ is a solution of the initial value problem ¢ = f(z,v),y(x¢) = yo. Hence
the theorem. O
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Successive approximation

Consider the function ¢ defined by
do(z) = Yo

This function satisfies the initial condition ¢y(z¢) = yo, but does not in general

satisfy (5.21). However, if we compute
oile) = wo+ [ S(t.on(0)
xo

= y0+/f(t7y0) dt
zo

We might expect that ¢; is a closer approximation to a solution than ¢q. If we

continue the process and define successively ¢g(x) = o
bnle) =w+ [fEo®) d (=012 (5:24)
xo

on taking the limit as k& — oo, that we would obtain
Pi(r) — ()
where ¢ would satisfy

(@) = yo + [ F(t,6(t)) dt

This ¢ is our desired solution. We call the functions ¢q, ¢o, - -+ defined by (5.24)
successive approximations to a solution of the integral equation (5.21) or the initial

value problem (5.20).
Example 5.23. Consider the initial value problem ¢’ = zy, y(0) = 1.

Successive approximation method

Then the integral equation corresponding to this initial value problem is

y=1+ [ty dt
0

and the successive approximation are given by ¢o(z) =1

brar () = 1+ [ ton(t) dt
0
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Thus

Then by induction we obtain

22 1 [22\? 1 /22\"
¢k<x>_1+7+ﬂ(7) *'“+m(5>

It is clear that ¢ (x) is the partial sum for the series expansion of the function

o(z) = ¢®*/2. Hence as limit k — oo, or(z) — ¢(x) for all z.
Thus ¢(x) = ¢®*/2 is the solution of given equation.

Usual method consider the equation y' = xy. Then by variable separable method

we have
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e
d
s A T dx
Yy
d
/_y = /x dz
Y
1 v
0 = —+4c¢
gy 9
y = e@/Dte

y(0)=1 = ¢=0
Hence y = /2 is the solution of the given equation.

Note:

Since f is continuous on R, it is bounded there. Hence there exists M > 0 such
that |f(z,y)| < M for all (z,y) € R*.

Theorem 5.24. The successive approzimations ¢, defined by (5.24), exist as con-
tinuous functions on

I: |z — x| <a=minimum {a,b/M},

and (x,¢(x)) is in R for x in I. Indeed, the ¢y satisfy
|ox () — yo| < Mz — 0] (5.25)
for all x in I.

Proof. Note: Since for z € I, |x — xo| < b/M, the inequality |pp(x) — yo| <
M|x — xo| < b for all z in I, which shows that (z, ¢x(z)) are in R for = in 1.

The geometric interpretation of the inequality |¢x(x) — yo| < M|x — x| is that
the graph of each ¢y lies in the region 7" in R bounded by the two lines
Yy —yo=M(x—x0) and y — yo = —M(x — x0)

and the lines

r—ro=oaand r — 19 = —«
Proof of theorem

We prove this by induction.
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Clearly ¢q exists on I as a continuous function, and satisfies (5.25) with k£ = 0,
since |do(z) — yo| = |yo — vo| = 0 < M|z — x¢|.
Also, since (x,yo) is in R, (x,¢o(x)) is in R. Now,

|p1(z) — ol = Z/0+/f(t;¢o(t)) dt — yo

- / £t 6o(t)) dt

IN

/ F(t do(8))] dt

M/dt
x0

= Mlz — x|

IN

Therefore |¢1(x) — yo| < M|z — x9|. Thus ¢ satisfies the inequality. Since f is

continuous on R, the function Fy defined by Fy = f(¢,yo) is continuous on /.

Thus ¢, given by

o1(z) = yo + ff(t, Go(t)) dt = yo + fm f(t,yo) dt = yo + ng(t) dt is continuous

X0 o
on I.

Suppose we assume that the theorem is true for the functions ¢q, ¢1, P2, - - - Gp.
To prove: The result is true for ¢ 1.

We know that (¢, ¢x(t)) is in R for ¢t € I. Thus the function Fy given by Fy(t) =
f(t, ox(t)) exist for t € I. It is continuous on I, since f is continuous on R and ¢

is continuous on .

Therefore ¢y is given by

Pr+1(2) = yo + f Fi.(t) dt

o

exists as a continuous function on 1.
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Also,

T

G (2) — w0 < / Fu(t) dt

o

xT

< /|Fk(t)] dt

zo

< Mlz — o

Thus |pri1(z) — yo| < M|z — x¢|. Hence ¢y satisfies the inequality. Hence the

theorem. O

Example 5.25. Consider the initial value problem y' =3y + 1, y(0) = 2.

(a) Compute the first four approximations ¢1, @1, @2, ¢3 to the solution.
(b) Compute the solution by using one of the methods in section (5.2) to (5.6)

(c) Compare the results of (b) and (c).

Solution:
(a) Given ¢/ =3y + 1, y(0) =2.

Here f(z,y) = 3y+1, 2o = 0, yo = 2. Then The integral equation corresponding

to initial value problem is
x

yzyo+ff<t,y)dt=2+f(3y+1) dt

o 0
and successive approximation are given by
$o(x) = yo = 2
¢k+1<‘r> :y0+ff(t7¢k<t>> dt? (k:071727)
)

That is ¢py1(z) =2+ f(?)gbk(t) + 1) dt.
0

135



Thus

() = 2+

(3(2+7t)+1) dt

(74 21t) dt

/
/
T
Po(x) = 2+ /(3¢1(t) +1) dt
/
/

2122
2

Po(z) = 2+ T+

T

balz) = 2+ / (3a(t) +1) dt

0
T

= 2+/(3(2+7t+%ﬂ2))+1) dt

0
T

2
= 2+/(7+21t+%)dt
0
2122 6323
> "7

Go(z) = 2+ T+

(b) Given ¢y = 3y + 1, y(0) = 2. This is a linear equation of the form y' + g(x)y =
h(z). Here g(xz) = —3 and h(x = 1. Clearly g, h are continuous functions. Then the

solution is given by
P(x) = e QW [eQUR(t)dt + ce= 9@ where Q(z) = [ g(t)dt
xo

o

Therefore Q(z) = | (—3)dt = —3x. Thus

Ot ==
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x
-1 6390

P(x) = e** / e ?ldt + ce = 3 + 5 + ce™”.
0

(7633: — 1).

Wl =

Also y(0) = 2 implies that ¢ = 2. Hence ¢(x) =

(c) Now using the series expansion of 3%, we have
3z (3z)*  (3xz)3

3r __ -
T T
1 3z
o(x) = §(7e -1)
1 3z (3z)*  (3z)?
= Z7(1+ 2 )21
3{7( T T T T
1 2 7(3x)3
21z% 633
= 247 5] 31

Taking limit as k& — oo we have ¢x(z) — ¢(x). Hence ¢(x) =

solution of given initial value problem.

Exercise:

Compute the first four approximation ¢g, ¢1, P2, 3.

(a) y' = 2> +y? y(0) =0 (b)y =1+uwy, y(0)=1
)y =y* y(0)=0 (d) y' =y y(0)=1

5.6 Lipschitz condition

Let f be a function defined for (z,y) in a set S. We say f satisfy a Lipschitz

condition on S if there exists a constant K > 0 such that
|f(xay1) - f($7y2)| S Klyl - y2|

for all (z,41), (x,y2) in S. The constant K is called a Lipschitz constant.
Note:

If f is continuous and satisfies a Lipschitz condition on the rectangle R, then
the successive approximations converge to a solution of the initial value problem on

lr — o] < a.
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Theorem 5.26. Suppose S is either a rectangle

|.T—.I‘0| SCL, |y_y0| §b7 (avb>0)7
or a strip
|ZL'—[L'0| <a, |y| < 00, (a>0)a
. ‘ of . ‘
and that f is a real-valued function defined on S such that 30 exists, 15 continuous
Y
on S, and
af .
a_y<'ruy) SK? ((xvy) m S)a

for some K > 0. Then f satisfies a Lipschitz condition on S with Lipschitz constant
K.

0

Proof. Supppose a—f(x,y)’ <K, ((z,y) in S). Then we have
Y

fa) -~ fe) = [ G d
y2ylaf
|f(x,y1)—f(x,y2)| = a_y(xvt) dt
Y1
of
< /a—y(x,t)' dt

IN
—
=
&

Therefore |f(z,y1) — f(z,y2)] < Kly1 — yof for all (x,y1),(x,y2) in S. Hence f
satisfies Lipschitz condition on S. O]

Example 5.27. Consider a function f(x,y) =zy*in R: |z| <1, |yl <1.

Now for (z,y) in R,

of
'l — 9
ay(m,y) Ty
af B
\a—y@,y)] — |2ay



< 2 |z[ [yl
< 2, since |z| <1, |y|<1

Alternate method:

Now for (x,y1), (z,y2) in R,

[f(@,y1) = fla,ye)|l = |oyl — 2y
= |a| |y — v
= 2| [(y1 +v2) (11 — v2)|
= |zl lyr + 42l |1 — v2l
< 2| (yal =+ lwel) lyr — w2l
< 2lyr — yof, since |z| <1, |y| <1

Thus |f(z,y1) — f(z,y2)] < 2|y1 — ya|. Hence f satisfies Lipschitz condition on R.

Example 5.28. Consider a function f(z,y) = zy* on the strip S: |z| <1, |y| <

Q.

Now for (z,y) in R,

of B
a—y(:ﬂ,y) = 2xy
af B
L] = o

< 2 af Jyl

< oo, since |z| <1, |yl < oo

Hence f does not satisfy Lipschitz condition on the strip.

Example 5.29. Consider a continuous function f(x,3) = %?/ on the rectangle
R: |z| <1, |y| < 1. Now for (z,y) in R,

a_<x7y) =

IN

Hence f does not satisfy Lipschitz condition on the strip.
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Exercise:

Show that the following function satisfies Lipschitz condition on the set S.
(a) flz,y) =4a* +y?on S |z| <1, [y[ <1

(b) f(z,y) = 2% cos?y + ysin®x on S : x| <1, |y| < co.

5.7 Convergence of Successive approximation

We now prove the main existence theorem.

Theorem 5.30. (Existence Theorem) Let f be a continuous real-valued function on
the rectangle
R: |$—x0|§a, |y_y0|§b7 (a)b>0)7

and let |f(x,y)| < M for all (x,y) in R. Further suppose that f satisfies a Lipschitz

condition with constant K in R. Then the successive approximations

b0(2) = Yo, Drer(x) = o + / (. ou(0) dt, (k=0,1,2,--),

converge on the interval

I: |x—a0 <a= minimum {a,b/M}

to a solution ¢ of the initial value problem

y':f(x,y), y(xO):yO on 1.

Proof. (a) Convergence of {¢y(z)}.

¢, may be written as
k=00 — Qo+ 1 — 1+ + 1 — Pp1 + P
Ok = ¢o + (1 — do) + (2 — ¢1) + - + (¢ — dr—1)
Hence ¢y, is a partial sum for the series

o0

¢o(x) + D (¢p(2) — p1()) (5.26)

p

To show: The sequence {¢x(z)} converges. It is equivalent to show that the series
(5.26) converges. Then by Theorem 5.24, the function ¢, all exists as continuous

function on I and (x, ¢,(z)) is in R for x in I.

Moreover |¢1(x) — po(x)| < M |z —x0| for z in I. That is |¢1(z) —yo| < M |z — x|
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for z in I.

Now

¢2(x) — P1(w) = <y0+/f(tv¢1(t)) dt) - (y0+/f<t7¢0(t>> dt)

xT

_ /[f(t, G1(t)) — f(t, d0(1))] dt

o

xT

162(a) — 1) = / (8 61(8)) — £t do(t))] dt

IN

zo
[17(t.610) - st oute))]
Since f satisfies Lipschitz condition, |f(z,vy1) — f(2z,v2)| < K|y1 — yo|. Therefore,

|62(2) = ¢1(z)] <

/ K [61(t) — do(t)] dt

T

KM /[t—:z:0| dt

zo

IN

T

KM /(t—wo) dt

t—x0)2 1" .
( 0) } , since x —1x9>0
xo

= KM {
(x — x0)?
2

(x — 3)?
2

= KM

Therefore |po(x) — ¢1(z)| < K M if x > x.

If x < xp, the same result is valid.

We shall prove by induction that

M KPPz — xoP
p!

|6p(x) — dp-1(2)] < for all z € 1. (5.27)
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The result is true for p =1 and p = 2.

Let us assume that > x (the proof is similar for z < x).
Assume the result (5.27) is true for p = m.

To prove: For p=m + 1.

x

Pm1(T) — Pm(x) = yo+/f(t,¢m(t)) dt | — yo+/f(t,¢m_1(t)) dt

Z0

_ / £t dm(®)) = F(t, dm (1)) dt

zo

x

i (2) — G(z)] = / (6 bm(t)) — F(ts b ()] dt

/ (6 (8)) — (8 b (8))] dt

<

< /K | (t) — dm—1(t)| dt|, by Lipschitz condition
zo

<

CEMKm—l _ m
K/ [t = 2o
m !
zo

ME™ | [
- = /|t—x0]mdt
zo

m !

M K™
= /(t—xo)mdt, since © — xg > 0

o

m !

. M K™ (t - $0)m+1 *
B (m+1)
M Km($ _ :L.O)(m—%l)

= CEE , for x > x

zo

for all z in 1.

M K™|r — (m+1)
Therefore |¢ms1(z) — dm(z)] < (Jﬁ 1“)70!‘

Hence (5.27) is true for p = m + 1. Hence (5.27) is true for all p. The infinite series
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do(x) + f: (6,(2) — Bp1(2))

is absolutely convergent, that is, the series
[Go(@)] + D 16p(x) = dpr ()] (5.28)
p=1

is convergent on /. Indeed, from (5.27), we see that

M KP|z — o[
60(0) = s ()] < T2

which shows that P™ term of the series in (5.28) is less than or equal to % times
K |z—xo|

P term of power series for e

Since the power series for e/ 12720l is convergent, the series (5.28) is convergent
for all x € I. Therefore (5.26) is convergent on I. Hence k" partial sum of (5.26)

which is just ¢ (x) tends to a limit ¢(x) as k — oo for each z € I.
(b) Properties of the limit ¢

This limit function ¢ is a solution to our problem on I.
To show ¢ is continuous on /.

If 21,29 are in I.

et (1) — G (2)] = / £t (1)) dt — / £t 6n(t)) dt

— /f(t,(bk(t)) dt+/f(t,¢k(t)) dt

_ / F(t dult)) dt

IN

[ 15t an
< JT/} |x1 — x|, since |f(x,y)| < M, for all (z,y) € R.
By letting k — 00, ¢(x) — ¢(z). Therefore
|6(x1) — ¢(w2)| < M |21 — 2 (5.29)
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This shows that as xo — x1, ¢(z3) — ¢(x1). That is ¢ is continuous on I.

Also letting o1 = x, x2 = xo in (5.29), we obtain
|6(x) — (o) < M [z — 0|

That is |¢(x) — yo| < M |x — x| for x in I. Therefore the points (x, ¢(z)) are in
R for all z in 1.

(c) Estimate for |¢(z) — ¢p(x)|
We hae 6(2) = 0o(0)+3 (6(2) = dy-1(0)) aind 9u(e) = o () +3 (65(2) = 6y-1(0)

Using (5.27) we find that

[0(@) = du(@)] = D [8p(@) — Spr(2)] = Y [0p() = dp1 ()]
= | D [#n(@) = dpr(@)]
p=k+1

IN
=
g
T
&

IN

IN

IN

Therefore .
M (Ka)™

|p(z) — dp(z)] < KErD! e (5.30)

(Ka)kJrl

(k+1)!
e — 0 as k — oo. In terms of €, (5.30) may be written as

Letting €, = . Since ¢, is a general term for the series for ¢ we see that
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2

[o(z) — dr(z) <
(d) Limit ¢ is a solution

To show

o(x) =yo + /f(t,gb(t)) dt forall z el (5.31)

Since f is continuous on R, ¢ is continuous in [, the function F given by F(t) =
f(t,¢(t)) is continuous on /. Now,

Pr+1(x) = yo + fw f(t,¢x(t)) dt and ¢p1 — ¢(x) as k — oo.

Thus to prove (5.31), we must show that
St on(t) dt — [ f(t,¢(t)) dt

We have

/ £t 6(1)) di — / £t onlt)) dt| = / (8 6(8) — F(E (1)) dt

INA
=
=
©
—~
Cb
|
s
=
©
En
S
S~—
=
Q.
~~

IA
—
=
<
=
|
ASE

=

=
QU
~~

= M " ¢ | — x4

which tends to zzero as k — oo for each x € I. Hence [ f(¢, ¢x(t)) dt — [ f(t,¢(t)) dt
zo

o
as k — oo. This completes the proof. O]

Theorem 5.31. The k™ successive approzimation ¢y, to the solution ¢ of the initial

value problem y' = f(x,y), y(xo) = yo satisfies

M (Ka)kJrl

Em eK“ fOT’ allz i 1.

|0(x) = di()] <

145



Exercise:
1. Consider the equation y' =1 — 22y, y(0) =0 and R: |z] < 3, |y| < 1. Show
that f satisfies Lipschitz condition on R with Lipschitz constant K = 1.

2. Consider the equation y' =1+ y? y(0) =0and R: |z| < 3, |y| < 1. Show that
f satisfies Lipschitz condition on R with Lipschitz constant K = 1. Also find the
solution ¢ using separation of variable method. Then show that all the successive

approximation ¢ exists and ¢ (z) — ¢(x) for each z satisfying |z| < 1.
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