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Chapter 1

Linear equations with constant

coefficients

1.1 Introduction

A linear differential equation of order n with constant coefficients is an equation of

the form

a0y
(n) + a1y

(n−1) + · · · + an−1y
′ + any = b(x)

where a0 6= 0, a1, · · · , an are complex constants and b is some complex valued func-

tion on an interval I. By dividing by a0 we can arrive at an equation of the same

form with a0 replaced by 1. Therefore we can always assume a0 = 1, and our

equation becomes

y(n) + a1y
(n−1) + · · · + an−1y

′ + any = b(x) (1.1)

It will be convenient to denote the differential equation on the left of the equality

(1.1) by L(y). Thus

L(y) = y(n) + a1y
(n−1) + · · · + an−1y

′ + any

and the equation (1.1) becomes simply L(y) = b(x). If b(x) = 0 for all x in I

the corresponding equation L(y) = 0 is called a homogeneous equation, whereas if

b(x) 6= 0 for some x in I the corresponding equation L(y) = b(x) is called a non-

homogeneous equation. We give meaning to L itself as a differential operator which

operates on function which have n derivatives on I, and transforms such a function
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φ into a function L(φ) whose value at x is given by

L(φ(x)) = φ(n)(x) + a1φ
(n−1)(x) + · · · + an−1φ

′(x) + anφ(x).

Thus

L(φ) = φ(n) + a1φ
(n−1) + · · · + an−1φ

′ + anφ.

A solution of L(y) = b(x) is therefore a function φ having n derivatives on I such

that L(φ) = b. If b is continuous on I, then it is possible to find all solutions of

L(y) = b(x). In this chapter we consider the case of second order equation (n = 2).

1.2 Second order homogeneous equations

Here we are concerned with the equation

L(y) = y′′ + a1y
′ + a2y = 0 (1.2)

where a1 and a2 are constants. We recall that the first order equation with constant

coefficients y′ + ay = 0 has a solution e−ax. The constant −a in this solution is

the solution of the equation r + a = 0. Since differentiating an exponential erx

any number of times, where r is a constant,always yields a constant times erx, it is

reasonable to expect that for some appropriate constant r, erx will be a solution of

the equation (1.2). Let us try it for (1.2). We formulate the result as a theorem.

Theorem 1.1. Let a1, a2 be constants, and consider the equation

L(y) = y′′ + a1y
′ + a2y = 0

If r1, r2 are distinct roots of the characteristic polynomial p, where

p(r) = r2 + a1r + a2,

then the functions φ1, φ2 defined by

φ1 = er1x, φ2 = er2x (1.3)

are solutions of L(y) = 0. If r1 is a repeated root of the p, then the functions φ1, φ2

defined by

φ1 = er1x, φ2 = xer1x (1.4)

are solutions of L(y) = 0.

Proof. Consider the equation L(y) = y′′ + a1y
′ + a2y = 0 where a1, a2 are constants.
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Now, consider the function erx. Then we find that

L(erx) = (erx)′′ + a1(e
rx)′ + a2(e

rx)

= r2erx + a1re
rx + a2e

rx

= (r2 + a1r + a2)e
rx,

and erx will be a solution of L(y) = 0, i.e. L(erx) = 0, if it satisfies r2 +a1r+a2 = 0.

We let

p(r) = r2 + a1r + a2,

and call p the characteristic polynomial of L, or of the equation (1.2). Note that

p(r) can be obtained from L(y) by replacing yk everywhere by rk, where we use the

conventions that the zero-th derivative of y, y(0), is y itself and that r0 = 1. From

the fundamental theorem of Algebra, we know that the polynomial p always has

two complex roots r1, r2 (which may be real). If r1 6= r2, then p(r1) = 0 = p(r2).

Therefore L(er1x) = 0 = L(er2x). Hence er1x and er2x are two distinct solutions of

L(y) = 0. It is possible to find two distinct solutions in the case r1 = r2 also. Since

r1 is a root of p(r), p(r1) = 0. Hence er1x is one solution of L(y) = 0. Also, We have

L(erx) = p(r)erx (1.5)

for all r and x. We recall that if r1 is a repeated root of p, then not only p(r1) = 0,

but p′(r1) = 0. This suggests differentiating the equation (1.3) with respect to r.

Then we observe that since L involves only differentiation with respect to x,
∂

∂r
L(erx) = L

(

∂

∂r
(erx)

)

= L(xerx),

and therefore

L(xerx) = (xerx)′′ + a1(xe
rx)′ + a2(xe

rx)

= xr2erx + 2rerx + a1e
rx + a1xre

rx + a2xe
rx

= [xr2 + 2r + a1 + a1xr + a2x] e
rx

= [p′(r) + xp(r)] erx

Now setting r = r1 in this equation we see that L(xer1x) = 0, thus showing that

xer1x is another solution in case r1 = r2. Hence the theorem.

Remark 1.2. If φ1, φ2 are any two solutions of L(y) = 0, c1, c2 are any two constants,

then the linear combination of two solutions φ = c1 φ1 + c2 φ2 is also a solution of
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the equation L(y) = 0. Indeed

L(φ) = (c1 φ1 + c2 φ2)
′′ + a1(c1 φ1 + c2 φ2)

′ + a2(c1 φ1 + c2 φ2)

= c1φ
′′
1 + c2φ

′′
2 + c1a1φ

′
1 + c2a2φ

′
2 + c1a1φ1 + c2a2φ2

= c1 L(φ1) + c2 L(φ2)

= 0

The function φ which is zero for all x is also a solution, the trivial solution of

L(y) = 0.

Example 1.3. Consider the equation φ = y′′ + y′ − 2y = 0.

The characteristic polynomial is p(r) = r2 + r − 2 and its roots are −2 and 1.

Every solution φ is of the form φ(x) = c1e
−2x + c2e

x where c1, c2 are constants.

Example 1.4. Consider the equation y′′ + ω2y = 0 where ω is a positive constant.

The characteristic polynomial is p(r) = r2 + ω2 and its roots are iω and −iω.

Every solution φ is of the form φ(x) = c1e
iωx + c2e

−iωx where c1, c2 are constants.

Taking c1 = 1
2

and c2 = 1
2

we see that

φ(x) =
1

2
eiωx +

1

2
e−iωx

=
eiωx + e−iωx

2
= cosωx

Therefore cosωx is a solution. Similarly, taking c1 = 1
2i

and c2 = −1
2i

we see that

φ(x) =
1

2i
eiωx +

−1

2i
e−iωx

=
eiωx − e−iωx

2i
= sinωx

Therefore sinωx is a solution. The equation y′′ + ω2y = 0 is called the harmonic

oscillator equation.

Exercise:

1. Find the solution of the following equations.

(i) y′′ − 4y = 0 (ii) 3y′′ + 2y′ = 0
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(iii) y′′ = 0 (iv) y′′ + 16y = 0

(v) y′′ + 2iy′ + y = 0 (vi) y′′ − 4y′ + 5y = 0

2. Consider the equation y′′ + y′ − 6y = 0

(a) Compute the solution φ satisfying φ(0) = 1, φ′(0) = 0.

(b) Compute the solution ψ satisfying ψ(0) = 1, ψ′(0) = 0.

(c) Compute φ(1) and ψ(1).

3. Find all solutions φ of y′′ + y = 0 satisfying

(i) φ(0) = 0, φ(π) = 0 (ii)φ(0) = 1, φ′(π/2) = 2

(iii) φ(0) = 0, φ′(π/2) = 0 (iv) φ(0) = 0, φ(π/2) = 0.

1.3 Initial value problems

Every solution of the equation

L(y) = y′′ + a1y
′ + a2y = 0

is a linear combination of the solutions (1.4) or (1.5) will depend on showing that

the initial value problems for this equation have unique solutions. An initial value

problem for L(y) = 0 is a problem of finding a solution φ satisfying

φ(x0) = α, φ′(x0) = β, (1.6)

where x0 is some real number, and α, β are two given constants. Thus we specify

φ and its first derivative at some initial point x0. This problem is denoted by

L(y) = 0, y(x0) = α, y′(x0) = β, (1.7)

Theorem 1.5. (Existence Theorem) For any real x0, and constants α, β, there

exists a solution φ of lhe initial value problcm (1.7) on −∞ < x <∞.

Proof. We show that there are unique constants c1, c2 such that φ = c1φ1 + c2φ2

satisfies (1.6), where φ1, φ2 are the solutions given by (1.3) or (1.4). In order to

satisfy the relations (1.6) we must have

φ(x0) = c1φ1(x0) + c2φ2(x0) = α

φ′(x0) = c1φ
′
1(x0) + c2φ

′
2(x0) = β

(1.8)
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By representing the equations (1.8) in the matrix form, we have
(

φ1(x0) φ2(x0)

φ′
1(x0) φ′

2(x0)

)(

c1

c2

)

=

(

α

β

)

This matrix equation will have unique solution c1, c2 if the determinant

∆ =

∣

∣

∣

∣

∣

φ1(x0) φ2(x0)

φ′
1(x0) φ′

2(x0)

∣

∣

∣

∣

∣

= φ1(x0)φ
′
2(x0) − φ′

1(x0)φ2(x0) 6= 0.

In case r1 6= r2,

φ1 = er1x, φ2 = er2x,

and

∆ = r2e
r1x0er2x0 − r1e

r1x0er2x0 = (r2 − r1)e
(r1+r2)x0 ,

which is not zero, since e(r1+r2)x0 6= 0 and r1 6= r2.

In case r1 = r2,

φ1 = er1x, φ2 = xer1x,

and

∆ = er1x0(er1x0 + x0r1e
r1x0) − r1x0e

r1x0er1x0 = e2r1x0 6= 0.

Therefore the determinant condition is satisfied in either case. Thus, if c1, c2 are

the unique constants satisfying (1.8), the function

φ = c1φ1 + c2φ2

will be the desired solution satisfying φ(x0) = α, φ′(x0) = β.

We have shown that there is a unique linear combination of φ1 and φ2 which is a

solution of (1.7). Although it is not quite obvious, it turns out that this solution is

the only one. Before proving this we give an estimate for the rate of growth of any

solution φ of L(y) = 0, and its first derivative φ′, in terms of the coefficients 1, a1, a2

appearing in L(y). As a measure of the ′′size′′ of φ and φ′ we take

‖φ(x)‖ = ( |φ(x)|2 + |φ′(x)|2)1/2
,

where the positive square root is understood. The ”size” of L will be measured

by

k = 1 + |a1| + |a2|.

Note that If b and c are any two constants, the we have the inequality that

2 |b| |c| ≤ |b|2 + |c|2. (1.9)
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This inequality results by noticing that

0 ≤ (|b| − |c|)2 = |b|2 + |c|2 − 2|b||c|.

Theorem 1.6. Let φ be any solution of L(y) = y′′ + a1y
′ + a2y = 0 on an interval

I containing a point x0. Then for all x in I

‖φ(x0)‖ e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek|x−x0| (1.10)

where ‖φ(x)‖ = ( |φ(x)|2 + |φ′(x)|2)1/2
, k = 1 + |a1| + |a2|.

Proof. Remark: Geometrically the inequality (1.10) says that ‖φ(x)‖ always re-

mains between the two curves.

y = ‖φ(x0)‖ e−k(x−x0) and y = ‖φ(x0)‖ ek(x−x0);

We let u(x) = ‖φ(x)‖2 for x ∈ I. Then

u(x) = |φ(x)|2 + |φ′(x)|2

= φ(x)φ(x) + φ′(x)φ′(x), since |z|2 = zz

= φ(x)φ(x) + φ′(x)φ′(x)

Then

u′(x) = φ(x)φ′(x) + φ′(x)φ(x) + φ′(x)φ′′(x) + φ′′(x)φ′(x)

|u′(x)| = |φ(x)φ′(x) + φ′(x)φ(x) + φ′(x)φ′′(x) + φ′′(x)φ′(x)|
≤ |φ(x)φ′(x)| + |φ′(x)φ(x)| + |φ′(x)φ′′(x)| + |φ′′(x)φ′(x)|
= |φ(x)||φ′(x)| + |φ′(x)||φ(x)| + |φ′(x)||φ′′(x)| + |φ′′(x)||φ′(x)|
= |φ(x)||φ′(x)| + |φ′(x)||φ(x)| + |φ′(x)||φ′′(x)| + |φ′′(x)||φ′(x)|
= 2|φ(x)||φ′(x)| + 2|φ′(x)||φ′′(x)|
≤ 2 |φ(x)||φ′(x)| + 2 |φ′(x)| (|a1||φ′(x)| + |a2||φ(x)|)
= 2 (1 + |a2|) |φ(x)||φ′(x)| + 2 |a1||φ′(x)|2

≤ (1 + |a2|) (|φ(x)|2 + |φ′(x)|2) + 2 |a1||φ′(x)|2, using(1.9)

= (1 + |a2|) |φ(x)|2 + (1 + |a2|) |φ′(x)|2 + 2 |a1||φ′(x)|2

= (1 + |a2|) |φ(x)|2 + (1 + |a2| + 2 |a1|) |φ′(x)|2

≤ 2 (1 + |a1| + |a2|) |φ(x)|2 + (1 + |a1| + |a2|) |φ′(x)|2

= 2 (1 + |a1| + |a2|) (|φ(x)|2 + |φ′(x)|2)
= 2 k u(x), where k = 1 + |a1| + |a2|
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Therefore |u′(x)| ≤ 2 k u(x). That is −2 k u(x) ≤ u′(x) ≤ 2 k u(x).

Take u′(x) ≤ 2 k u(x). Then

u′(x) − 2 k u(x) ≤ 0

e−2kxu′(x) + u(x)(−2ke−2kx) ≤ 0

(e−2kx u(x))′ ≤ 0

Let x0 < x

x
∫

x0

(e−2kt u(t))′ dt ≤ 0

e−2kx u(x) − e−2kx0 u(x0) ≤ 0

e−2kx u(x) ≤ e−2kx0 u(x0)

u(x) ≤ e2k(x−x0) u(x0)

‖φ(x)‖2 ≤ ‖φ(x0)‖2 e2k(x−x0)

‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x−x0)

Similarly taking −2 k u(x) ≤ u′(x) we can show that ‖φ(x0)‖ e−k(x−x0) ≤ ‖φ(x)‖.
Hence

‖φ(x0)‖ e−k(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x−x0) when x0 < x (1.11)

In a similar way, we can show that

‖φ(x0)‖ e−k(x0−x) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x0−x) when x < x0 (1.12)

Hence from (1.11) and (1.12), we have

‖φ(x0)‖ e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek|x−x0|

where k = 1 + |a1| + |a2|. Hence the theorem.

Theorem 1.7. (Uniqueness Theorem) Let α, β be any tw0 constants, and let x0 be

any real number. On any interval I containing x0 there exists at most one solution

φ of the initial value problem L(y) = 0, y(x0) = α, y′(x0) = β.

Proof. Suppose φ and ψ are two solutions of the initial value problem L(y) = y′′ +

a1y
′ + a2y = 0, y(x0) = α, y′(x0) = β. Then we have to prove that φ(x) = ψ(x)
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for all x. Let χ = φ(x) − ψ(x). Then L(χ) = L(φ) − L(ψ) = 0, and χ(x0) = 0,

χ′(x0) = 0. Then ‖χ(x0)‖ = 0, and applying the inequality (1.10) to χ we see that

‖χ(x)‖ = 0 for all x in I. This implies that χ(x) = 0 for all x in I, or φ = ψ, proving

our result.

Theorem 1.8. Let φ, ψ be the two solutions of L(y) = 0 given by (1.3) in case

r1 6= r2, and by (1.4) in case r1 = r2. If c1, c2 are any two constants the function

φ = c1φ1 + c2φ2 is a solution of L(y) = 0 on −∞ < x <∞. Conversely, if φ is any

solution of L(y) = 0 on −∞ < x < ∞, there are unique constants c1, c2 such that

φ = c1φ1 + c2φ2.

Example 1.9. Find the solution of the initial value problem

y′′ − 2y′ − 3y = 0, y(0) = 0 y′(0) = 1.

Soln:

The characteristic polynomial is r2 − 2r − 3 and its roos are 3,−1. Then

y(x) = c1e
3x + c2e

−x is a solution of given equation.

Also y(0) = 0 implies that c1 + c2 = 0 and y′(0) = 1 implies that 3c1 − c2 = 1.

solving these we have c1 = 1
4

and c2 = −1
4

.

Hence y(x) = 1
4
e3x − 1

4
e−x is a solution of the given initial value problem.

Exercise:

1. Find the solution of the following initial value problem.

(i) y′′ + 10y = 0, y(0) = π, y′(0) = π2

(ii) y′′ + (3i− 1)y′ − 3iy = 0, y(0) = 2, y′(0) = 0

1.4 Linear dependence and independence

Two functions φ1, φ2 defined on an interval I are said to be linearly dependent on

I if there exist two constants c1, c2, not both zero, such that c1φ1(x) + c2φ2(x) = 0

for all x in I. The functions φ1, φ2, are said to be linearly independent on I if they

are not linearly dependent there. Thus φ1, φ2 are lincarly independent on I if the

only constants c1, c2 Such that c1φ1(x) + c2φ2(x) = 0 for all x in I are the constants

c1 = 0, c2 = 0.

The functions defined by (1.3) are linearly independent on any interval I. For

suppose
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c1e
r1x+ c2e

r2x = 0 (1.13)

for all x in I. Then, multiplying by e−r1x, we obtain

c1 + c2e
(r2−r1)x = 0,

and differentiating these results

c2(r2 − r1)e
(r2−r1)x = 0.

Since r1 6= r2, and e(r2−r1)x is never zero, this implies c2 = 0. But if c2 = 0, the

relation (1.13) gives c1e
r1x = 0, or c1 = 0 also.

Similarly the functions φ1, φ2 defined by (1.4) are linearly independent on any

interval I. The proof is the same. If

c1e
r1x + c2xe

r1x = 0

on I, by multiplying by e−r1x we get c1 + c2x = 0, and differentiating we obtain

c2 = 0, and this implies c1 = 0.

There is a simple test which enables us to tell whether two solutions φ1, φ2, of

L(y) = 0 are linearly independent or not. It involves the determinant

W (φ1, φ2) =

∣

∣

∣

∣

∣

φ1 φ2

φ′
1 φ′

2

∣

∣

∣

∣

∣

= φ1φ
′
2 − φ′

1φ2

which is called the Wronskian of φ1, φ2. It is a function, and its value at x is denoted

by W (φ1, φ2)(x).

Theorem 1.10. Two solutions φ1, φ2 of L(y) = 0 are linearly independent on an

interval I if and only if W (φ1, φ2)(x) 6= 0 for all x in I.

Proof. First suppose W (φ1, φ2)(x) 6= 0 for all x in I, and let c1, c2 be constants such

that

c1φ1(x) + c2φ2(x) = 0 (1.14)

for all x in I. Then also

c1φ
′
1(x) + c2φ

′
2(x) = 0 (1.15)

for all x in I. For a fixed x the equations (1.14), (1.15) are linear homogeneous

equations satisfied by c1, c2. Hence the matrix representation of the equations (1.14)

and (1.15) is
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(

φ1 φ2

φ′
1 φ′

2

)(

c1

c2

)

=

(

0

0

)

Since the determinant of the coefficients of c1, c2 in (1.14) and (1.15) is just

W (φ1, φ2)(x) which is not zero. Therefore the matrix

(

φ1 φ2

φ′
1 φ′

2

)

is non-singular.

Hence the above matrix equation has unique solution namely

(

0

0

)

. That is

c1 = 0, c2 = 0. Therefore c1 = 0, c2 = 0 is the only solution of (1.14) and (1.15).

This proves that φ1, φ2 are linearly independent on I.

Conversely, assume φ1, φ2 are linearly independent on I. Suppose that there is an

x0 in I such that W (φ1, φ2)(x0) = 0. This implies that the system of two equations

c1φ1(x0) + c2φ2(x0) = 0

c1φ
′
1(x0) + c2φ

′
2(x0) = 0

(1.16)

has a solution c1, c2, where at least one of these numbers is not zero. Let c1, c2 be

such a solution and consider the function ψ = c1φ1 + c2φ2. Now L(ψ) = 0, and from

(1.16) we see that

ψ(x0) = 0, ψ′(x0) = 0.

From the Uniqueness theorem (Theorem 1.7), we infer that ψ(x) = 0 for all x in I

and thus

c1φ(x) + c2φ2(x) = 0

for all x in I. But this contradicts the fact that φ1, φ2 are linearly independent on

I. Thus the superposition that there was a point x0 in I such that W (φ1, φ2) = 0

must be false. We have consequently proved that W (φ1, φ2) 6= 0 for all x in I.

It is easy to see that we need compute W (φ1, φ2) at only one convenient point to

test the linear independence of the solutions φ1, φ2.

Theorem 1.11. Let φ1, φ2 be two solutions of L(y) = 0 on an interval I and let

x0 be any point in I. Then φ1, φ2 are linearly independent on I if and only if

W (φ1, φ2)(x0) 6= 0.

Proof. If φ1, φ2 are linearly independent on I then W (φ1, φ2) 6= 0 for all x in I by

Theorem 1.10. In particular, W (φ1, φ2)(x0) 6= 0

14



Conversely, suppose W (φ1, φ2)(x0) 6= 0, and suppose c1, c2 are constants such that

c1φ1 + c2φ2 = 0

for all x in I. Then we see that

c1φ1(x0) + c2φ2(x0) = 0

c1φ
′
1(x0) + c2φ

′
2(x0) = 0

(1.17)

and since the determinant of the coefficients is W (φ1, φ2) 6= 0, we obtain

c1 = c2 = 0. Thus φ1, φ2 are linearly independent on I.

Using the concept of linear independence we can show any two linearly indepen-

dent solutions of L(y) = 0 determine all solutions, in the sense of the following

theorem.

Theorem 1.12. Let φ1, φ2 be any two linearly independent solutions of L(y) = 0

on an interval I. Every solulion φ of L(y) = 0 can be written uniquely as φ =

c1φ1 + c2φ2, where c1, c2 are constants.

Remark 1.13. The importance of Theorem 1.12 is that we need only to find any

two linearly independent solutions of L(y) = 0 in order to obtain all solutions of

L(y) = 0.

Example 1.14. Consider the equation y′′ + y = 0. Its characteristic polynomial

is r2 + 1 and its roots are i,−i. Hence it has two solutions ei and e−i, which are

linearly independent, since the wronskian of two functions id non-zero for all x. But

it also has the two linearly independent solutions cosx, sin x. Sometimes it is more

convenient to express a solution in terms of the latter set of functions, especially

when we want to observe the oscillatory character of a real-valued solution.

Exercise:

The functions φ1, φ2, defined below exist for −∞ < x < ∞. Determine whether

they are linearly dependent or independent there.

(i) φ1(x) = x2, φ2(x) = 5x2

(ii) φ1(x) = sin x, φ2(x) = eix

(iii) φ1(x) = cosx, φ2(x) = 3(eix + e−ix)

15



1.5 A Formula for the Wronskian

There is a convenient formula for the Wronskian of two solutions of L(y) = 0, which

results from the fact that W (φ1, φ2) satisfies a first order linear equation.

Theorem 1.15. If φ1, φ2 are two solutions of L(y) = 0 on an interval I containing

a point x0, then

W (φ1, φ2)(x) = e−a1(x−x0) W (φ1, φ2)(x0). (1.18)

Proof. Let φ1, φ2 be two solutions of L(y) = 0. Then we have

φ′′
1 + a1φ

′
1 + a2φ1 = 0 and φ′′

2 + a1φ
′
2 + a2φ2 = 0

and mulplying the first equation by −φ2, the second by φ1 and adding we obtain

(φ1φ
′′
2 − φ′′

1φ2) + a1(φ1φ
′
2 − φ′

1φ2) = 0.

we notice that if W = W (φ1, φ2),

W = φ1φ
′
2 − φ′

1φ2, and W ′ = φ1φ
′′
2 − φ′′

1φ2.

Thus W satisfies the first order equation

W ′ + a1W = 0.

Hence W (x) = ce−a1x, where c is some constant. Setting x = x0 we see that

W (x0) = ce−a1x0 ,

or

c = e−a1x0W (x0),

and thus

W (x) = e−a1(x−x0)W (x0),

which was to be proved.

1.6 Non-homogeneous equation of order two

We turn now to the problem of finding all solutions of the equation

L(y) = y′′ + a1y
′ + a2y = b(x),

where b is some continuous function on an interval I. Suppose we know that ψp is

a particular solution of this equation, and that ψ is any other solution. Then

L(ψ − ψp) = L(ψ) − L(ψp) = b− b = 0
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on I. This shows that ψ − ψp is a solution of the homogeneous equation L(y) = 0.

Therefore if φ1, φ2 are linearly independent solutions of L(y) = 0, there are unique

costants c1, c2 Such that

ψ − ψp = c1φ1 + c2φ2.

In other words every solution ψ of L(y) = b(x) can be written in the form

ψ = ψp + c1φ1 + c2φ2

and we see that the problem of finding all solutions of L(y) = b(x) reduces to finding

a particular one ψp, and two linearly independent solutions φ1, φ2 of L(y) = 0. Note

that if

L(ψp) = b and L(φ1) = L(φ2) = 0.

and c1, c2 are any constants, then

ψ = ψp + c1φ1 + c2φ2

satisfies L(ψ) = b.

To find a particular solution of L(y) = b(x) we reason in the following way. Every

solution of L(y) = 0 is of the form c1φ1 + c2φ2 where c1, c2 are constants, and φ1, φ2

are linearly independent solutions. Such a function c1φ1 +c2φ2 can not be a solution

of L(y) = b(x) unless b(x) = 0 on I. However, suppose we allow c1, c2 to become

functions u1, u2 (not necessarily constants) on I, and then ask whether there is a

solution of L(y) = b(x) of the form u1φ1 +u2φ2 on I. This procedure is known as the

variation of constants. The remarkable thing is that it works. We argue in reverse.

Suppose we have a solution of L(y) = b(x) of the form u1φ1 +u2φ2, where u1, u2 are

functions. Then

(u1φ1 + u2φ2)
′′ + a1(u1φ1 + u2φ2)

′ + a2(u1φ1 + u2φ2)

= u1L(φ1) + u2L(φ2) + (φ1u
′′
1 + φ2u

′′
2) + 2(φ′

1u
′
1 + φ′

2u
′
2) + a2(φ1u

′
1 + φ2u

′
2)

= +(φ1u
′′
1 + φ2u

′′
2) + 2(φ′

1u
′
1 + φ′

2u
′
2) + a2(φ1u

′
1 + φ2u

′
2) = b

and we noticed that if

φ1u
′
1 + φ2u

′
2 = 0 (1.19)

then

0 = (φ1u
′
1 + φ2u

′
2)

′ = (φ′
1u

′
1 + φ′

2u
′
2) + (φ1u

′′
1 + φ2u

′′
2), and we must have

φ′
1u

′
1 + φ′

2u
′
2 = b. (1.20)

looking at this reasoning in reverse we see that if we can find two functions u1, u2

17



satisfying (1.19), (1.20), then indeed u1φ1 + u2φ2 will satisfy L(y) = b(x).

The equations (1.19), (1.20) are two linear equations for u′1, u
′
2, with a determinant

which is just the Wronskian W (φ1, φ2). Since we assumed φ1, φ2 to be linearly

independent this determinant is never zero on I, and there exist unique solutions

u′1, u
′
2. Indeed, a little calculation shows that

u′1 =
φ2 b

W (φ1, φ2)
, u′2 =

φ1 b

W (φ1, φ2)
.

In order to obtain u1, u2 all we have to do is integrate. For example, if x0 is in I

we may take for u1, u2

u1(x) = −
x
∫

x0

φ2(t) b(t)

W (φ1, φ2)(t)
dt, u2(x) =

x
∫

x0

φ1(t) b(t)

W (φ1, φ2)(t)
dt.

The solution ψp = u1φ1 + u2φ2 then takes the form

ψp(x) =

x
∫

x0

[φ1(t)φ2(x) − φ1(x)φ2(t)] b(t)

W (φ1, φ2)(t)
dt. (1.21)

We summarize our results,

Theorem 1.16. Let b be continuous on an interval I. Every solution ψ of L(y) =

b(x) on I can be written as

ψ = ψp + c1φ1 + c2φ2

where ψp is a particular solution, φ1, φ2 are two linearly independent solutions of

L(y) = 0, and c1, c2 are constants. A particular solution ψp, is qiven by (1.21).

Conversely every such ψ is a solution of L(y) = b(x).

Example 1.17. Consider the equation y′′ − y′ − 2y = e−x.

The characteristic polynomial is

r2 − r − 2 = (r + 1)(r − 2),

and therefore two linearly independent solutions φ1, φ2 of the homogeneous equa-

tion are

φ1(x) = e−x, φ2(x) = e2x.

A particular solution ψp of the non-homogeneous equation is of the form

ψp(x) = u1(x)e
−x + u2(x)e

2x,

where u′1, u
′
2 satisfies the equations (1.19) and (1.20)

φ1u
′
1 + φ2u

′
2 = 0 and φ′

1u
′
1 + φ′

2u
′
2 = b.

18



That is,

u′1e
−x + u′2e

2x = 0

−u′1e−x + 2u′2e
2x = e−x.

The matrix representation of above equations are

(

e−x e2x

−e−x 2e2x

)(

u′1
u′2

)

=

(

0

e−x

)

Then the wronskian is

W (φ1, φ2)(x) =

∣

∣

∣

∣

∣

e−x e2x

−e−x 2 e2x

∣

∣

∣

∣

∣

= 3 ex

(

u′1
u′2

)

=
1

3 ex

(

2e2x −e2x

e−x e−x

)(

0

e−x

)

=
1

3 ex

(

−ex

e−2x

)

Therefore u′1 =
1

3 ex
(−ex) and u′2 =

1

3 ex
(e−2x). Then on integration we obtain

u1 =
−1

3
x and u2 =

−1

9
e−3x.

Hence the particular integral

ψp = u1φ1 + u2φ2 = −x
3
e−x − 1

9
e−x.

Thus the general solution ψ of the non-homogeneous equation has the form

ψ = c1e
−x + c2e

2x − x

3
e−x − 1

9
e−x.

where c1, c2 are any two constants.

Exercise: Solve the following equations

(a) 4y′′ − y = ex (b) y′′ − 7y′ + 6y = sinx

(c) y′′ + 4y = cosx (d) y′′ − 4y′ + 5y = 3e−x + 2x2

(e) y′′ + 9y = sin 3x (f) 6y′′ + 5y′ − 6y = x
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Chapter 2

Linear equations with constant

coefficients

2.1 The homogeneous equation of order n

Everything we have done for the second order equation can be carried over to the

case of the equation of order n. Now let L(y) be given by

L(y) = y(n) + a1y
(n−1) + a2y

(n−2) + · · · + any,

where a1, a2, · · · , an are constants. We try to solve L(y) = 0 as before by trying an

exponential erx. We see that

L(erx) = p(r)erx, (2.1)

where p(r) = rn + a1r
n−1 + a2r

n−2 + · · · + an.

We call p the characteristic polynomial of L. If r1 is a root ot p, then clearly

L(er1x) = 0, and we have a solution er1x. If r1 is a root of multiplicity m1 of p, then

p(r1) = 0, p′(r1) = 0, p′′(r1) = 0, · · · , p(m1−1)(r1) = 0.

If we differentiate the equation (2.1) k times with respect to r, we obtain

∂k

∂rk
L(erx) = L

(

∂k

∂rk
(erx)

)

= L(xkerx)

=

[

p(k)(r) + kp(k−1)(r)x+
k(k − 1)

2 !
p(k−2)(r)x2 + · · · + p(r)xk

]

erx.
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Note: If f and g are two functions having k derivatives, then

(fg)(k) = f (k)g + kf (k−1)g′ + k(k−1)
2 !

f (k−2)g′′ + · · · + fg(k).

Thus for k = 0, 1, · · · ,m1−1, we see that xker1x is a solution of L(y) = 0. Repeating

this proress for each root of p we arrive at the following result.

Theorem 2.1. Let r1, r2, · · · , rs, be the distinct roots of the characteristic polymo-

mial p, and suppose ri has multiplicity mi (thus m1 +m2 + · · ·+ms = n). Then the

n functions

er1x, xer1x, · · · , xm1−1er1x;

er2x, xer2x, · · · , xm2−1er2x; · · · ;

ersx, xersx, · · · , xms−1ersx

are solutions of L(y) = 0.

Definition 2.2. The n functions φ1, φ2, · · · , φn on an interval I are said to be

linearly dependent on I if there are constants c1, c2, · · · , cn not all zero, such that

c1φ1 + c2φ2 + · · · + cnφn = 0

for all x in I. The functions φ1, φ2, · · · , φn are said to be linearly independent on I

if they are not linearly dependent on I.

Theorem 2.3. The n solutions of L(y) = 0 given by

er1x, xer1x, · · · , xm1−1er1x;

er2x, xer2x, · · · , xm2−1er2x; · · · ;

ersx, xersx, · · · , xms−1ersx

are linearly independent on any interval I.

Proof. Suppose we have n constants

cij (i = 1, 2, · · · , s; j = 0, 1, · · · ,mi − 1)

such that
s
∑

i=1

mi−1
∑

j=0

cij x
j erix (2.2)

on I. Summing over j for fixed i, we let

Pi(x) =
mi−1
∑

j=0

cij x
j

be the polynomial coefficient of erix in (2.2). Thus we have

P1(x)e
r1x + P2(x)e

r2x + · · · + Ps(x)e
rsx = 0 (2.3)
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on I. Assume that not all the constants cij are 0. Then there will be at least one

of the polynomials Pi which is not identically zero on I. By relabeling the roots ri

if necessary we can assume that Ps, is not identically zero on I. Now (2.3) implies

that

P1(x) + P2(x)e
(r2−r1)x + · · · + Ps(x)e

(rs−r1)x = 0 (2.4)

on I. Upon differentiating (2.4) sufficiently many times (at most m1 times) we

can reduce P1(x) to 0. In this procoss the degrees of the polynomials multiplying

e(rs−r1)x remain unchanged, as well as the non-identically vanishing character of any

of these polynomials. We obtain an expression of the form

Q2(x)e
(r2−r1)x +Q3(x)e

(r3−r1)x + · · · +Qs(x)e
(rs−r1)x = 0

or

Q2(x)e
r2x +Q3(x)e

r3x + · · · +Qs(x)e
rsx = 0

on I, where the Qi are polynomials, degQi = degPi, and Qs does not vanish

identically. Continuing this process we finally arrive at a situation where

Rs(x)e
rsx = 0 (2.5)

on I, and Rs is a polynomial, degRs = degPs, which does not vanish identically on

I. But (2.5) implies that Rs(x) = 0 for all x on I. This contradiction forces us to

abandon the supposition that Ps is not identically zero. Thus Ps(x) = 0 for all x in

1, and we have shown that all the constants cij = 0, proving that the n solutions

given in Theorem are linearly independent on any interval I.

Example 2.4. Consider the equation y′′′ − 3y′ + 2y = 0.

The characteristic polynomial is p(r) = r3−3r+2 and its roots are 1, 1,−2. Thus

three linearly independent solutions are given by

ex, x ex, e−2x,

and any solution φ has the form

φ(x) = (c1 + c2x)e
x + c3e

−2x,

where c1, c2, c3 are any constants.

Exercise: Determine whether the set of functions defined on −∞ < x < ∞ are

linearly independent or dependent.

(a) φ1(x) = 1, φ2(x) = x φ3(x) = x2

(b) φ1(x) = eix, φ2(x) = sin x φ3(x) = 2 cosx
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(c) φ1(x) = x, φ2(x) = e2x φ3(x) = |x|.

Exercise: Find the solutions of the following equations:

(a) y′′′ − 8y = 0 (b) y(4) + 16y = 0

(c) y′′′ − 5y′′ + 6y′ = 0 (d) y(4) + 5y′′ + 4y = 0

(e) y′′′ − 3y′ − 2y = 0 (f) y(4) − 16y = 0

Exercise: Compute the wronskian of four linearly independent solutions of the

equation y(4) + 16y = 0.

2.2 Initial value problems for n-th order equa-

tions

An initial value problem for L(y) = 0 is a problem of finding a solution which

has prescribed values for it, and its first n − 1 derivatives, at some point x0 (the

initial point). If α1, α2, · · · , αn are given constants, and x0 is some real number, the

problem of finding a solution φ of L(y) = 0 satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn,

is denoted by

L(y) = 0, y(x0) = α1, y
′(x0) = α2, · · · , y(n−1)(x0) = αn.

There is only one solution to such an initial value problem, and the demonstration

of this will depend on an estimate for the rate of growth of a solution φ of L(y) = 0,

together with its derivatives φ′, · · · , φ(n−1). We define ‖φ(x)‖ by

φ(x) =
[

|φ(x)|2 + · · · +
∣

∣φ(n−1)(x)
∣

∣

2
]1/2

,

positive square root being understood, and give the analogue of Theorem 1.6.

Theorem 2.5. Let φ be any solution of L(y) = y(n) + a1y
(n−1) + · · · + any = 0 on

an interval I containing a point x0. Then for all x in I,

‖φ(x0)‖ e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek|x−x0| (2.6)

where ‖φ(x)‖ =
(

|φ(x)|2 + |φ′(x)|2 + · · · + |φ(n−1)(x)|2
)1/2

,

k = 1 + |a1| + |a2| + · · · + |an|.
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Proof. Letting u(x) = ‖φ(x)‖2 for x ∈ I. Then

u(x) = |φ(x)|2 + |φ′(x)|2 + · · · + |φ(n−1)(x)|2

= φ(x)φ(x) + φ′(x)φ′(x) + · · · + φ(n−1)(x)φ(n−1)(x), since |z|2 = zz

= φ(x)φ(x) + φ′(x)φ′(x) + · · · + φ(n−1)(x)φ(n−1)(x)

Then

u′(x) = φ(x)φ′(x) + φ′(x)φ(x) + φ′(x)φ′′(x) + φ′′(x)φ′(x)

+ · · · + φ(n)(x)φ(n−1)(x) + φ(n−1)(x)φ(n)(x)

|u′(x)| = |φ(x)φ′(x) + φ′(x)φ(x) + φ′(x)φ′′(x) + φ′′(x)φ′(x)

+ · · · + φ(n)(x)φ(n−1)(x) + φ(n−1)(x)φ(n)(x)|
≤ |φ(x)φ′(x)| + |φ′(x)φ(x)| + |φ′(x)φ′′(x)| + |φ′′(x)φ′(x)|

+ · · · + |φ(n)(x)φ(n−1)(x)| + |φ(n−1)(x)φ(n)(x)|
= |φ(x)||φ′(x)| + |φ′(x)||φ(x)| + |φ′(x)||φ′′(x)| + |φ′′(x)||φ′(x)|

+ · · · + |φ(n)(x)||φ(n−1)(x)| + |φ(n−1)(x)||φ(n)(x)|
= |φ(x)||φ′(x)| + |φ′(x)||φ(x)| + |φ′(x)||φ′′(x)| + |φ′′(x)||φ′(x)|

+ · · · + |φ(n)(x)||φ(n−1)(x)| + |φ(n−1)(x)||φ(n)(x)|
= 2|φ(x)||φ′(x)| + 2|φ′(x)||φ′′(x)| + · · · + 2|φ(n−1)(x)||φ(n)(x)|
≤ 2 |φ(x)||φ′(x)| + 2 |φ′(x)||φ′′(x)| + · · · +

2|φ(n−1)(x)| (|a1||φ(n−1)(x)| + |a2||φ(n−2)(x)| + · · · + |an||φ(x)|)
≤ (1 + |an|)|φ(x)|2 + (2 + |a(n−1)|)|φ′(x)|2 + · · · +

(2 + |a1|)|φ(n−2)(x)|2 + (1 + 2|a1| + |a2| + · · · + |an|)|φ(n−1)(x)|2, using(1.9)

≤ 2(1 + |a1| + |a2| + · · · + |an|)|φ(x)|2 + 2(1 + |a1| + |a2| + · · · + |an|)|φ′(x)|2

+ · · · + 2(1 + |a1| + |a2| + · · · + |an|)|φ(n−2)(x)|2

+2(1 + |a1| + |a2| + · · · + |an|)|φ(n−1)(x)|2

= 2(1 + |a1| + |a2| + · · · + |an|)
(

|φ(x)|2 + |φ′(x)|2 + · · · + |φ(n−1)(x)|2
)

= 2 k u(x), where k = 1 + |a1| + |a2| + · · · + |an|

Therefore |u′(x)| ≤ 2 k u(x). That is −2 k u(x) ≤ u′(x) ≤ 2 k u(x).
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Take u′(x) ≤ 2 k u(x). Then

u′(x) − 2 k u(x) ≤ 0

e−2kxu′(x) + u(x)(−2ke−2kx) ≤ 0

(e−2kx u(x))′ ≤ 0

Let x0 < x

x
∫

x0

(e−2kt u(t))′ dt ≤ 0

e−2kx u(x) − e−2kx0 u(x0) ≤ 0

e−2kx u(x) ≤ e−2kx0 u(x0)

u(x) ≤ e2k(x−x0) u(x0)

‖φ(x)‖2 ≤ ‖φ(x0)‖2 e2k(x−x0)

‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x−x0)

Similarly taking −2 k u(x) ≤ u′(x) we can show that ‖φ(x0)‖ e−k(x−x0) ≤ ‖φ(x)‖.
Hence

‖φ(x0)‖ e−k(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x−x0) when x0 < x (2.7)

In a similar way, we can show that

‖φ(x0)‖ e−k(x0−x) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x0−x) when x < x0 (2.8)

Hence from (2.7) and (2.8), we have

‖φ(x0)‖ e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek|x−x0|

where k = 1 + |a1| + |a2| + · · · + |an|. Hence the theorem.

Theorem 2.6. (Uniqueness Theorem) Let α1, α2, · · · , αn be any n constants, and

let x0 be any real number. On any interval I containing x0 there exists at most one

solution φ of L(y) = 0 satisfying

φ(x0) = α1, φ′(x0) = α2, · · · , φ(n−1)(x0) = αn.

Proof. The proof is the same as that of Theorem 1.7.

Suppose φ and ψ are two solutions of the initial value problem L(y) = 0, y(x0) =

α1, y
′(x0) = α2, · · · , y(n−1)(x0) = αn on I. Then we have to prove that φ(x) =
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ψ(x) for all x. Let χ = φ(x) − ψ(x). Then L(χ) = L(φ) − L(ψ) = 0, and χ(x0) =

0, χ′(x0) = 0, · · · , χ(n−1)(x0) = 0. Then ‖χ(x0)‖ = 0, and applying the inequality

(2.6) to χ we see that ‖χ(x)‖ = 0 for all x in I. This implies that χ(x) = 0 for all

x in I, or φ = ψ, proving our result.

Definition 2.7. The wronskian W (φ1, φ2, · · · , φn) of n functions φ1, φ2, · · · , φn hav-

ing n− 1 derivatives on an interval I is defined to be the determinant function

W (φ1, φ2, · · · , φn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 · · · φn

φ′
1 · · · φ′

n
...

...

φ
(n−1)
1 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Theorem 2.8. If φ1, φ2, · · · , φn are solutions of L(y) = 0 on an interval I, then

they are linearly independent there if and only if W (φ,φ2, · · · , φn)(x) 6= 0 for all x

in I.

Proof. First suppose W (φ1, φ2, · · · , φn)(x) 6= 0 for all x in I, and let c1, c2, · · · , cn
be constants such that

c1φ1(x) + c2φ2(x) + · · · + cnφn(x) = 0 (2.9)

for all x in I. Then also

c1φ
′
1(x) + c2φ

′
2(x) + · · · + cnφ

′
n(x) = 0

c1φ
′′
1(x) + c2φ

′′
2(x) + · · · + cnφ

′′
n(x) = 0

...

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · · + cnφ

(n−1)
n (x) = 0

(2.10)

for all x in I. For a fixed x the equations (2.9), (2.10) are linear homogeneous equa-

tions satisfied by c1, c2, · · · , cn. Hence the matrix representation of the equations

(2.9) and (2.10) is













φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

























c1

c2
...

cn













=













0

0
...

0












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Since the determinant of the coefficients of c1, c2 · · · , cn in (2.9) and (2.10) is just

W (φ1, φ2, · · · , φn)(x) which is not zero. Therefore the matrix













φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n













is non-singular. Hence the above matrix equation has unique solution namely












0

0
...

0













. That is c1 = 0, c2 = 0, · · · , cn = 0. Therefore c1 = 0, c2 = 0, · · · , cn = 0

is the only solution of (2.9) and (2.10). This proves that φ1, φ2, · · · , φn are linearly

independent on I.

Conversely, assume φ1, φ2 are linearly independent on I. Suppose that there is an

x0 in I such that W (φ1, φ2, · · · , φn)(x0) = 0. This implies that the system of linear

equations

c1φ1(x0) + c2φ2(x0) + · · · + cnφn(x0) = 0

c1φ
′
1(x0) + c2φ

′
2(x0) + · · · + cnφ

′
n(x0) = 0

c1φ
′′
1(x0) + c2φ

′′
2(x0) + · · · + cnφ

′′
n(x0) = 0

...

c1φ
(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · · + cnφ

(n−1)
n (x0) = 0

(2.11)

has a solution c1, c2, · · · , cn, where at least one of these numbers is not zero. Let

c1, c2, · · · , cn be such a solution and consider the function ψ = c1φ1+c2φ2+· · ·+cnφn.

Now L(ψ) = 0, and from (2.11) we see that

ψ(x0) = 0, ψ′(x0) = 0, · · · , ψ(n−1)(x0) = 0.

From the Uniqueness theorem (Theorem 2.6), we infer that ψ(x) = 0 for all x in I

and thus

c1φ(x) + c2φ2(x) + · · · + cnφn(x) = 0

for all x in I. But this contradicts the fact that φ1, φ2 · · · , φn are linearly in-

dependent on I. Thus the superposition that there was a point x0 in I such
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that W (φ1, φ2, · · · , φn) = 0 must be false. We have consequently proved that

W (φ1, φ2, · · · , φn) 6= 0 for all x in I.

Note: The above result and the proof do not depend on the fact that L has constant

coefficients.

Theorem 2.9. (Existence Theorem) Let α1, α2, · · · , αn be any n constants, and

let x0 be any real number. There exists a solution φ of L(y) = 0 on −∞ < x < ∞
satisfying

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn (2.12)

Proof. Let φ1, φ2, · · · , φn be any set of n linearly independent solutions of L(y) = 0.

We know that φ = c1φ1 + c2φ2 + · · · + cnφn os a solution of L(y) = 0.

φ(x0) = c1φ1(x0) + c2φ2(x0) + · · · + cnφn(x0) = α1

φ′(x0) = c1φ
′
1(x0) + c2φ

′
2(x0) + · · · + cnφ

′
n(x0) = α2

φ′′(x0) = c1φ
′′
1(x0) + c2φ

′′
2(x0) + · · · + cnφ

′′
n(x0) = α3

...

φ(n−1)(x0) = c1φ
(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · · + cnφ

(n−1)
n (x0) = αn

(2.13)

Therefore the matrix representation is













φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

























c1

c2
...

cn













=













α1

α2

...

αn













Since W (φ1, φ2, · · · , φn)(x) 6= 0, the matrix













φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n













is non-singular. Hence the above matrix equation has unique solution. Therefore

there exists unique set of constants c1, c2, · · · , cn satisfying (2.13). For this choice of

c1, c2, · · · , cn the function φ = c1φ1+c2φ2+· · ·+cnφn will be the desired solution.
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Theorem 2.10. Let φ1, φ2, · · · , φn be n linearly independent solutions of L(y) = 0

on an interval I. If c1, c2, · · · , cn are any constants

φ = c1φ1 + c2φ2 + · · · + cnφn (2.14)

is a solution, and every solution may be represented in this form.

Proof. We have already seen that

L(φ) = c1L(φ1) + · · · + cnL(φn) = 0.

Now, let φ be any solution of L(y) = 0, and let x0 be in I. Suppose

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn.

In the proof of Theorem 2.9 we showed that there exist unique constants c1, c2, · · · , cn
Such that ψ = c1φ1 + c2φ2 + · · · + cnφn is a solution of L(y) = 0 on I satisfying

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn.

The uniqueness theorem (Theorem 2.6) implies that φ = ψ, proving that φ may be

represented as in (2.14)

A simple formula exists for the Wronskian, as in the case n = 2.

Theorem 2.11. If φ1, φ2, · · · , φn are two solutions of L(y) = 0 on an interval I

containing a point x0, then

W (φ1, φ2, · · · , φn)(x) = e−a1(x−x0) W (φ1, φ2, · · · , φn)(x0). (2.15)

Proof. Let φ1, φ2, · · · , φn be n solutions of L(y) = 0.

Let W = W (φ1, φ2, · · · , φn),

From the definition of W , its derivatives W ′ is the sum of n determinants. That

is, W ′ = V1 +V2 + · · ·+Vn, where Vk differ from W only in its kththrow and kth row

of Vk is obtained by differentiating kth row of W . Thus

W ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ′
1 φ′

2 · · · φ′
n

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′′
1 φ′′

2 · · · φ′′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ · · ·+
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−2)
1 φ

(n−2)
2 · · · φ

(n−2)
n

φ
(n)
1 φ

(n)
2 · · · φ

(n)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The first n − 1 determinants V1, V2, · · · , Vn−1 are all zero, since they each have

two identical rows. Since φ1, φ2, · · · , φn are solutions of L(y) = 0, we have

φ
(n)
i = −a1φ

(n−1)
i − a2φ

(n−2)
i − · · · − anφ1.

Therefore,

W ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

−
n−1
∑

j=0

an−jφ
(j)
1 −

n−1
∑

j=0

an−jφ
(j)
2 · · · −

n−1
∑

j=0

an−jφ
(j)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The value of this determinant is unchanged if we multiply any row by a number

and add to the last row. Hence

W ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

−a1φ
(n−1)
1 −a1φ

(n−1)
2 · · · −a1φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −a1 W

Thus W satisfies the first order equation W ′ + a1W = 0.

Hence W (x) = ce−a1x, where c is some constant. Setting x = x0 we see that

W (x0) = ce−a1x0 ,

or

c = ea1x0W (x0),

and thus
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W (φ1, φ2, · · · , φn)(x) = e−a1(x−x0)W (φ1, φ2, · · · , φn)(x0),

which was to be proved.

Corollary 2.12. Let φ1, φ2, · · · , φn be n solutions of L(y) = 0 on an interval I

containing x0. Then they are linearly independent on I if and only if

W (φ1, φ2, · · · , φn)(x0) 6= 0.

Proof. The proof is an immediate consequence of Theorem 2.8 and the formula

(2.15).

Example 2.13. As an illustration of the use of wronskian formula (2.15), we con-

sider the homogeneous equation of order 3 which has a root r1 with multiplicity 3.

Its characteristic polynomial is

p(r) = (r − r1)
3 = r3 − 3r1r

2 + 3r2
1r − r2

1.

Hence L(y) = y′′′ − 3r1y
′′ + 3r2

1y
′ − r2

1y

and we have a1 = −3r1. We take

φ1(x) = er1x, φ2(x) = x er1x, φ3(x) = x2 er1x

and then obtain

W (φ1, φ2, φ3)(x) =

∣

∣

∣

∣

∣

∣

∣

er1x x er1x x2 er1x

r1e
r1x (1 + r1x)e

r1x (2x+ r1x
2)er1x

r2
1e

r1x (2r1 + r2
1x)e

r1x (2 + 4r1x+ r2
1x

2)er1x

∣

∣

∣

∣

∣

∣

∣

This a little involved to evaluate directly, but using (2.15) with x0 = 0 we obtain

W (φ1, φ2, φ3)(0) =

∣

∣

∣

∣

∣

∣

∣

1 0 0

r1 1 0

r2
1 2r1 2

∣

∣

∣

∣

∣

∣

∣

= 2

and hence W (φ1, φ2, φ3)(x) = 2e3r1x.

2.3 Equations with real constants

Suppose that the constants a1, a2, · · · , an in

L(y) = y(n) + a1y
(n−1) + · · · + any

are all real numbers. The characteristic polynomial
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p(r) = rn + a1r
n−1 + · · · + an

then has all real coeficients. This implies that

p(r) = p(r) (2.16)

for all r, since

p(r) = rn + a1rn−1 + · · · + an

= rn + a1rn−1 + · · · + an

= r(n) + a1r
n−1 + · · · + an

= rn + a1r
n−1 + · · · + an

= p(r)

Fron (2.16) it follows that if r1 is a root of p, then so is r1. Thus the roots of p

whose imaginary parts do not vanish occur in conjugate pairs. A slight extension

of this argument shows that if r1 is a root of multiplicity m1, then r1 is a root with

the same multiplicity m1. If there are s distinct roots of p, let us enumerate them

as follows:

r1, r1, r2, r2, · · · , rj, rj, r2j+1, · · · , rs

where

rk = αk + i βk, (k = 1, 2, · · · , j ; αk, βk− real ; rk 6= 0)

and r2j+1, · · · , rs are real. Suppose that rk has multiplicity mk. Then we have

2(m1 +m2 + · · · +mj) +m2j+1 + · · · +ms = n.

Corresponding to these roots we have the n linearly independent solutions

er1x, xer1x, · · · , xm1−1er1x ; er2x, xer2x, · · · , xm2−1er2x ; · · · ; ersx, xersx, · · · , xms−1ersx

(2.17)

of L(y) = 0. Every solution is a linear combination, with constant coefficients, of

these. We now note that if 1 ≤ k ≤ j, 0 ≤ h ≤ mk − 1,

xkerkx = xke(αk+iβk)x = xkeαkx(cos βkx+ i sin βkx),

xkerkx = xke(αk−iβk)x = xkeαkx(cos βkx− i sin βkx).
(2.18)

Thus every solution is a linear combination, with constant coefficients, of the n
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functions

eα1x cos β1x, xe
α1x cos β1x, · · · , xm1−1eα1x cos β1x;

eα1x sin β1x, xe
α1x sin β1x, · · · , xm1−1eα1x sin β1x;

...

ersx, xersx, · · · , xms−1ersx.

(2.19)

Each of the functions in (2.19) is a solution of L(y) = 0 since, from (2.18),

xheαkx cos βkx =
1

2
xh(erkx + erkx),

xheαkx sin βkx =
1

2i
xh(erkx − erkx).

(2.20)

The solutions in (2.19) are all real-valued, and they are linearly independent. For

suppose we have a linear combination of these functions equal to zero. Let us denote

the terms in this sum which involve

xheαkx cos βkx, xheαkx sin βkx

by

cxheαkx cos βkx+ dxheαkx sin βkx,

where c and d are constants. Using (2.20) we find that we have a linear combi-

nation of the functions (2.17) equal to zero, and the terms involving xherkx, xherkx

will be
c− id

2
xherkx +

c+ id

2
xherkx.

Since the functions (2.17) are linearly independent we must have all the coefficients

in this sum equal to zero. In particular

c+ id = 0, c− id = 0,

from which it follows that c = 0, d = 0. Thus the solutions (2.19) are linearly

independent.

If φ is any real-valued solution of L(y) = 0, then φ is a linear combination of

the real solutions (2.19) with real coefficients. Indeed, if we denote the solutions in

(2.19) by φ1, · · · , φn, we have

φ = c1φ1 + c2φ2 + · · · + cnφn,

for some constants c1, c2, · · · , cn. Since φ1, φ2, · · · , φn are all real-valued, we have
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0 = Im φ = (Im c1)φ1 + (Im c2)φ2 + · · · + (Im cn)φn,

Nd since φ1, · · · , φn are linearly independent we must have

Im c1 = Im c2 = · · · = Im cn = 0.

This shows that c1, c2, · · · , cn are all real numbers.

Remark 2.14. If φ is a solution of L(y) = 0 which is such that

φ(x0) = α1, φ′(x0) = α2, · · · , φ(n−1)(x0) = αn, (2.21)

where α1, α2, · · · , αn are real constants, then φ is real-valued. One way to see this

is to note that since

L(φ) = L(φ) = 0,

φ is also a solution, and hence so is

ψ = (1/2i)(φ− φ) = Im φ.

But, from (2.21) we see that

ψ(x0) = 0, ψ′(x0) = 0, , · · · , ψ(n−1)(x0) = 0.

The uniqueness theorem implies that ψ(x) = 0 for all x, or Im φ = 0, showing

that φ is real-valued.

Theorem 2.15. Suppose the constants a1, a2, · · · , an in the equation

L(y) = y(n) + a1y
(n−1) + · · · + any = 0

are all real. There exists a set of n linearly independent real-valued solutions

(2.19), and every real-ralued solution is a linear combination of these with real co-

efficients. If a solution satisfies real initial conditions, it is real-valued.

Example 2.16. Consider the equation y(4) + y = 0.

The characteristic polynomial is given by p(r) = r4 + 1 and its roots are
1√
2
(1 + i),

1√
2
(1 − i),

1√
2
(−1 + i),

1√
2
(−1 − i).

Thus every real solution of the given equation has the form

φ(x) = ex/
√

2
[

c1 cos(x/
√

2) + c2 sin(x/
√

2)
]

+ e−x/
√

2
[

c3 cos(x/
√

2) + c4 sin(x/
√

2)
]

,

where c1, c2, c3, c4 are real constants.
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Exercise:

1. Find all real-valued solutions of the following equations:

(a) y′′ + y = 0 (b) y′′ − y = 0

(c) y(4) − y = 0 (d) y(5) + 2y = 0

(e) y(4) − 5y′′ + 4y = 0

2. Find the solution φ of the initial value problem

y′′′ + y = 0, y(0) = 0 y′(0) = 1, y′′(0) = 0.

3.Determine all real valued solutions of the equations:

(a) y′′′ − iy′′ + y′ − iy = 0

(b) y′′ − 2iy′ − y = 0

2.4 The non-homogeneous equation of order n

Let b be a continuous function on an interval I, and consider the equation

L(y) = y(n) + a1y
(n−1) + · · · + any = b(x),

where a1, a2, · · · , an are constants. If ψp is a particular solution of L(y) = b(x)

and ψ is any other solution, then

L(ψ − ψp) = L(ψ) − L(ψp) = b− b = 0.

Thus ψ−ψp is a solution of the homogeneous equation L(y) = 0, and this inplies

that any solution ψ of L(y) = b(x) can be written in the form

ψ = ψp + c1φ1 + c2φ2 + · · · + cnφn

where ψp is a particular solution of L(y) = b(x), the functions φ1, φ2, · · · , φn, are

n linearly independent solutions of L(y) = 0, and c1, c2, · · · , cn are constants.

To find a particular solution ψp, we proceed just as in the case n = 2, that is, we

use the variation of constants method. We try to find n functions u1, u2, · · · un so

that

ψp = u1φ1 + u2φ2 + · · · + unφn

is a solution. If

u′1φ1 + u′2φ2 + · · · + u′nφn = 0,

then

ψ′
p = u1φ

′
1 + u2φ

′
2 · · · + unφ

′
n

and if
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u′1φ
′
1 + u′2φ

′
2 + · · · + u′nφ

′
n = 0,

then

ψ′′
p = u1φ

′′
1 + u2φ

′′
2 · · · + unφ

′′
n

Thus if u′1, u
′
2, · · · , u′n satisfy

u′1φ1 + u′2φ2 + · · · + u′nφn = 0

u′1φ
′
1 + u′2φ

′
2 + · · · + u′nφ

′
n = 0

...

u′1φ
(n−2)
1 + u′2φ

(n−2)
2 + · · · + u′nφ

(n−2)
n = 0

u′1φ
(n−1)
1 + u′2φ

(n−1)
2 + · · · + u′nφ

(n−1)
n = b

(2.22)

we see that

ψp = u1φ1 + u2φ2 + · · · + unφn

ψ′
p = u1φ

′
1 + u2φ

′
2 + · · · + unφ

′
n

...

ψ(n−1)
p = u1φ

(n−1)
1 + u2φ

(n−1)
2 + · · · + unφ

(n−1)
n

ψ(n)
p = u1φ

(n)
1 + u2φ

(n)
2 + · · · + unφ

(n)
n + b

(2.23)

Hence L(ψp) = u1L(φ1) + u2L(φ2) + · · · + unL(φn) + b = b,

and indeed ψp, is a solution of L(y) = b(x). The whole problem is noW reduced

to solving the linear system (2.22) for u′1, u
′
2, · · · , u′n. The determinant of the co-

efficients is just W (φ1, φ2, · · · , φn), which is never zero when φ1, · · · , φn ae linearly

independent solutions of L(y) = 0. Therefore there are unique functions u′1, · · · , u′n,

satisfying (2.22). It is easy to see that solutions are given by

u′k(x) =
Wk(x) b(x)

W (φ1, φ2, · · · , φn)(x)
, (k = 1, 2, · · · , n)

where Wk is the determinant obtained from W (φ1, · · · , φn) by replacing the k−th

column (that is φk, φ
′
k, · · · , φ

(n−1)
k ) by 0, 0, · · · , 0, 1.

If x0 is any point in I we may take for uk the function given by

uk(x) =

x
∫

x0

Wk(t) b(t)

W (φ1, φ2, · · · , φn)(t)
dt, (k = 1, 2, · · · , n)
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The particular solution ψp now takes the form

ψp =
n
∑

k=1

φk(x)

x
∫

x0

Wk(t) b(t)

W (φ1, φ2, · · · , φn)(t)
dt. (2.24)

Theorem 2.17. Let b be continuous on an interval I, and let φ1, · · · , φn be n linearly

independent solutions of L(y) = 0 on I. Every solution ψ of L(y) = b(x) can be

written as

ψ = ψp + c1φ1 + c2φ2 + · · · + cnφn

where ψp is a particular solution of L(y) = b(x) and c1, c2, · · · , cn are constants.

Every such ψ is a solution of L(y) = b(x). A particular solution is given by (2.24).

Note: It is clear that the particular solution ψp given by (2.24) satisfies

ψp(x0) = ψ′
p(x0) = · · · = ψ

(n−1)
p (x0) = 0.

Example 2.18. Consider the equation

y′′′ + y′′ + y′ + y = 1 (2.25)

which satisfies

psip(0) = 0, ψ′
p(0) = 1, ψ′′

p(0) = 0. (2.26)

The homogeneous equation is

y′′′ + y′′ + y′ + y = 0, (2.27)

and the characteristic polynomial corresponding to it is

p(r) = r3 + r2 + r + 1.

The roots of p are i,−i,−1. Since we are interested in a solution satisfying real

initial conditions we take for independent solutions of (2.27)

φ1(x) = cosx, φ2(x) = sin x, φ3(x) = e−x.

To obtain a particular solution of (2.25) of the form u1φ1 + u2φ2 + u3φ3, we must

solve the following equations for u′1, u
′
2, u

′
3 :

u′1φ1 + u′2φ2 + u′3φ3 = 0

u′1φ
′
1 + u′2φ

′
2 + u′3φ

′
3 = 0

u′1φ
′′
1 + u′2φ

′′
2 + u′3φ

′′
3 = 1,

vhich in this case reduce to
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(cos x)u′1 + (sinx)u′2 + e−xu′3 = 0

(− sin x)u′1 + (cosx)u′2 − e−xu′3 = 0

(− cos x)u′1 − (sinx)u′2 + e−xu′3 = 1.

(2.28)

The determinant of the coefficients is

W (φ1, φ2, φ3)(x) =

∣

∣

∣

∣

∣

∣

∣

cos x sin x e−x

− sin x cos x −e−x

− cos x − sin x e−x

∣

∣

∣

∣

∣

∣

∣

Using (2.15) we have

W (φ1, φ2, φ3)(x) = e−x W (φ1, φ2, φ3)(0),

since a1 = 1 in this case. Now

W (φ1, φ2, φ3)(0) =

∣

∣

∣

∣

∣

∣

∣

1 0 1

0 1 −1

−1 0 1

∣

∣

∣

∣

∣

∣

∣

= 2,

and thus W (φ1, φ2, φ3)(x) = 2e−x.

Solving (2.28) for u1 we find that

u′1(x) =
1

2
ex

∣

∣

∣

∣

∣

∣

∣

0 sinx e−x

0 cosx −e−x

1 − sin x e−x

∣

∣

∣

∣

∣

∣

∣

= −1

2
(cos x+ sinx). (2.29)

similarly we obtain

u′2(x) =
1

2
(cos x− sin x), (2.30)

u′3(x) =
1

2
ex. (2.31)

Integrating (2.29),(2.30),(2.31), we obtain as choices u1, u2, u3 :

u1(x) =
1

2
(cos x− sin x),

u2(x) =
1

2
(sin x+ cosx),

u3(x) =
1

2
ex.
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Therefore a particular solution of (2.25) is given by

u1(x)φ1(x) + u2(x)φ2(x) + u3(x)φ3(x)

=
1

2
(cosx− sin x) cos x+

1

2
(sinx+ cosx) sinx+

1

2
ex

= 1.

The most general solution ψ of (2.25) is of the form

ψ(x) = 1 + c1 cosx+ c2 sin x+ c3e
−x,

where c1, c2, c3 are constants. We must choose these constants so that the condi-

tions (2.26) are valid. This leads to the following equations for c1, c2, c3 :

c1 + c2 = −1, c2 − c3 = 1, c1 − c3 = 0,

which have the unique solution

c1 = −1

2
, c2 =

1

2
, c3 = −1

2
.

Therefore the solution of our problem is given by

ψ(x) = 1 +
1

2
(sinx− cos x− e−x).

The solution corresponding to that given in (2.24), with x0 = 0, is easily seen to

be

ψp(x) = 1 − 1

2
(cos x+ sinx+ e−x),

and this satisfies

ψp(0) = 0, ψ′
p(0) = 0, ψ′′

p(0) = 0.

Exercise:

1. Find all solutions of the following equations:

(a) y′′′ − y′ = x (b) y′′′ − 8y = eix

(c) y(4) + 16y = cosx (d) y(4) − y = cosx

2.5 A special method for solving the non-homogeneous

equation

Although the variation of constants method yields a solution of the non-homogeneous

equation it sometimes requires more labor than necessary. We now give a method,

which often faster, of solving the non-homogeneous equation L(y) = b(x) where b is

a solution of some homogeneous equation M(y) = 0 with conslant coefficients. Thus
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b(x) must be a sum of terms of the type P (x) eax, where P is a polynomial and a is

a constant.

Suppose L andM have constant coefficients, and have orders n andm respectively.

If ψ is a solution of L(y) = b(x), and M(b) = 0, then clearly

M(L(ψ)) = M(b) = 0.

This shows that ψ is a solution of a homogeneous equation M(L(y)) = 0 with

constant coefficients of order m+n. Thus ψ can be written as a linear combination

with constant coefficients of orderm+n linearly independent solutions ofM(L(y)) =

0. Not every linear combination will be a solution of L(y) = b(x) however. Thus,

to find out what conditions must be satisfied by the constants, we substitute back

into L(y) = b(x). This always leads to a determination of a set of coefficients;

Example 2.19. Consider the equation

L(y) = y′′ − 3y′ + 2y = x2.

Since x2 is a solution of M(y) = y′′′ = 0, we see that every solution ψ of L(y) = x2

is a solution of

M(L(y)) = y(5) − 3y(4) + 2y(3) = 0.

The characteristic polynomial of this equation is r3(r2 − 3r+ 2) which is just the

product of the characteristic polynomials for L and M . The roots are 0, 0, 0, 1, 2

and hence ψ must have the form

ψ(x) = c0 + c1x+ c2x
2 + c3e

x + c5e
2x

We notice immediately that c4e
x + c5e

2x is just a solution of L(y) = 0. Since we

are interested only in a particular solution ψp of L(y) = x2, we can assume ψp has

the form

ψp = c1 + c2x+ c3x
2.

The problem is to determine the constants co, c1, c2 so that L(ψp) = x2. Computing

we find

ψ′
p(x) = c1 + 2c2x, ψ′′

p(x) = 2c2,

and

L(ψp) = (2c2 − 3c1 + 2c0) + (−6c2 + 2c1)x+ 2c2x
2 = x2.

Thus equating coefficients of x2, x and constants we have

2c2 = 1, − 6c2 + 2c1 = 0 and 2c2 − 3c1 + 2c0 = 0

Therefore c2 =
1

2
, c1 =

3

2
, c0 =

7

4
.
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Hence ψp(x) =
1

4
(7 + 6x+ 2x2) is a particular solution of L(y) = x2.

We call this method the annihilator method, since to solve L(y) = b(x), we fnd

an M which makes M(b) = 0, that is, annihilates b. Once M has been found the

problem becomes algebraic in nature, no integrations being necessary. Actually, as

we have seen from the cxample, all we require is the characteristic polynomial q ofM .

The following is a table of some functions together with charactecristic polynomials

of annihilators. In this table a is onstant, and k is a non-ncgative integer.

Function Characteristic Polynomial of an Annihilator

(a) eax r − a

(b) xkeax (r − a)k+1

(c) sin ax, cos ax (a− real) r2 + a2

(d) xk sin ax, xk cos ax (a− real) (r2 + a2)k+1

Let us consider another example of the annihilator method.

Example 2.20. Consider the equation

L(y) = y′′′ + y′′ + y′ + y = 1

Since 1 is a solution of M(y) = y′ = 0, we see that every solution ψ of L(y) = 1

is a solution of

M(L(y)) = (y′′′ + y′′ + y′ + y)′ = y(4) + y′′′ + y′′ + y′ = 0.

The characteristic polynomial of this equation is

p(r) = r4 + r3 + r2 + r = r(r3 + r2 + r + 1),

which is just the product of the characteristic polynomials for L and M . The roots

are with roots 0,−1, i,−i. and hence ψ must have the form

ψ(x) = c0 + c1e
−x + c2 cos x+ c3 sin x

We notice immediately that c1e
−x+c2 cos x+c3 sin x is just a solution of L(y) = 0.

Since we are interested only in a particular solution ψp of L(y) = x2, we can assume

ψp has the form

ψp = c0.

The problem is to determine the constants c0 so that L(ψp) = 1. Computing we

find that c0 = 1. For, since L(ψp) = 1, ψ′′′
p + ψ′′

p + ψ′
p + ψp = 1.

Hence ψp = 1 is a particular solution of L(y) = 1.

Thus the general solution is ψ(x) = 1 + c1e
−x + c2 cos x+ c3 sin x.
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Exercise:

1. Using the annihilator method find a particular solution of each of the following

equations:

(a) y′′ + 4y′ = cosx (b) y′′ + 4y = sin 2x

(c) y′′ + 9y = x2e3x (d) y′′ + y = xex cos 2x

2.6 Algebra of constant coefficient operators

In order to justify the annihilator method we study the algebra of constant cocficient

operators a little more carefully. For the type of equation we have in mind

a0y
(n) + a1y

(n−1) + · · · + any = b(x),

where a0 6= 0, a1, · · · , an are constants, and b is a sum of products of polynomials

and exponentials, every solution ψ has all derivatives on −∞ < x <∞. This follows

from the fact that ψ has n derivatives there, and

ψ(n) = b− a1

a0

ψ(n−1) − · · · − an

a0

ψ,

where b has all derivatives on −∞ < x <∞.

All the operators we now define will be assumed to be defined on the set of all

functions φ on −∞ < x <∞ which have all derivatives there. Let L and M denote

the operators given by

L(φ) = a0φ
(n) + a1φ

(n−1) + · · · + anφ,

M(φ) = b0φ
(m) + b1φ

(m−1) + · · · + bmφ,

where a0, a1, · · · , an, b0, b1, · · · , bm are constants, with a0 6= 0, b0 6= 0. It will be

convenient in what follows to consider a0, b0 which are not necessarily 1. The char-

acteristic polynomials of L and M are thus

p(r) = a0r
n + a1r

n−1 + an,

and

q(r) = b0r
m + b1r

m−1 + · · · + bm,

respectively. We define the sum L+M to be the operator given by

(L+M)(φ) = L(φ) +M(φ),

and the product M L to be the operator given by

(M L)(φ) = M(L(φ)).
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If φ is a constant we define α L by

(α L)(φ) = α(L(φ)).

We note that L+M ,ML and αL are all linear differential operators with constant

coefficients.

Two operators L and M are said to be equal if

L(φ) = M(φ)

for all φ which have an infinite number of derivatives on −∞ < x < ∞. Suppose

L,M have characteristic polynomials p, q respectively. Since erx, for any constant r,

has an infinite number of derivatives on −∞ < x <∞, we see that if L = M then

L(erx) = p(r)erx = M(erx) = q(r)erx,

and hence p(r) = q(r) for all r. This implies that m = n, and ak = bk, k =

0, l, · · · , n. Thus L = M if and only if L and M have the same order and the same

coefficients, or, what is the same, if and only if p = q.

If D is the differentiation operator D(φ) = 0, we define D2 = DD, and successively

Dk = DDk−1, (k = 2, 3, · · · ).

For completeness we define D0 by D0(φ) = φ, but do not usually write it explicitly.

If α is a constant we understand by α operating on a function φ just multiplication

by α. Thus

α(φ) = (α D0)(φ) = αφ.

Now, using our definitions, it is clear that

L = a0D
n + a1D

n−1 + · · · + an,

and

M = b0D
m + b1D

m−1 + · · · + bm.

Theorem 2.21. The correspondence which associates with each

L = a0D
n + a1D

n−1 + · · · + an

its characteristic polynomial p given by

p(r) = a0r
n + a1r

n−1 + · · · + an

is a one-to-one Correspondence between all linear differential operators with Con-

stant coefficients and all polynomials. If L,M are associated with p, q respectively,

then L+M is associated with p+ q, ML is associated with pq and αL is associated

with αp (α a constant).
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Proof. We have already seen that the correspondence is one-to-one since L = M if

and only if p = q. The remainder of the theorem can be shown directly or by noting

that

(L+M)(erx) = L(erx) +M(erx) = [p(r) + q(r)] (erx),

(ML)(erx) = M(L(erx)) = M(p(r)(erx)) = p(r)M(erx) = p(r)q(r)(erx),

(αL)(erx) = α(L(erx)) = αp(r)(erx)

This result implies that the algebraic properties of the constant coefficient operators

are the same as those of the polynomials. For example, since LM and ML both

have the characteristic polynomial pq. we have LM = ML. lf the roots of p are

r1, r2, · · · , rn, then

p(r) = a0(r − r1) · · · (r − rn),

and since the operator a0(D− r1) · · · (D− rn) has p as characteristic polynomial, we

must have

L = a0(D − r1) · · · (D − rn).

This gives a factorization of L into a product of constant coefficient operators of the

first order.

Remark 2.22. If L and M are not constant coefficient operators, then it may not

be true that LM = ML. For example, if L(φ)(x) = φ′(x), M(φ)(x) = xφ(x), then

(LM −ML)(φ)(x) = φ(x).

We apply Theorem (2.21) to give a justification of the annilhilator method.

Theorem 2.23. Consider the equation with constant coefficients

L(y) = P (x) eax, (2.32)

where P is the polynomial given by

P (x) = b0x
m + b1x

m−1 + · · · + bm, (b0 6= 0) (2.33)

Suppose a is a root of the characteristic polymomial p of L of multiplicity j. Then

there is a unique solution ψ of (2.32) of lhe form

ψ(x) = xj(c0x
m + c1x

m−1 + · · · + cm) eax,

where c0, c1, · · · , cm are constants determined by the annihilator method.
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Proof. The proof makes use of the formula

L(xkerx) =

[

p(r)xk + kp′(r)xk−1 +
k(k − 1)

2 !
p′′(r)xk−2 + · · · + kp(k−1)(r) x+ p(k)(r)

]

erx

(2.34)

The coefficient of P (l)xk−l in the bracket is the binomial coefficient

(

k
l

)

=
k !

(k − l) ! l !
.

Thus we may write

L(xkerx) =

[

k
∑

l=0

(

k
l

)

pl(r) xk−l

]

erx

where we understand 0! = 1.

An annihilator of the right side of (2.32) is M = (D − a)m+1, with characteristic

polynomial given by q(r) = (r − a)m+1.

Since a is a root of p with multiplicity j, it is a root of pq with multiplicity j+m+1.

Thus solutions of ML(y) = 0 are of the form

ψ(x) = (c0x
j+m + c1x

j+m−1 + · · · + cj+m) eax + φ(x),

where L(φ) = 0, and φ involves exponentials of the form esx, with s a root of p and

s 6= a. Since a is a root of p with multiplicity j, we have that

(cm+1x
j−1 + cm+2x

j−2 + · · · + cm+j) e
ax

is also a solution of L(y) = 0. Consequently we see that there is a solution ψ of

(2.32) having the form

ψ(x) = xj(c0x
m + c1x

m−1 + · · · + cm)eax (2.35)

where c0, c1, · · · , cm are constants.

We now show that these constants are uniquely determined by the requirement that

ψ satisfy (2.32). Substituting (2.35) into L we obtain

L(ψ) = c0L(xj+meax) + c1L(xj+m−1eax) + · · · + cmL(xjeax). (2.36)

The terms in this sum can be computed using (2.34). We note that

p(a) = p′(a) = · · · = p(j−1)(a) = 0, p(j) 6= 0,

since a is a root of p with multiplicity j. Thus, if k ≥ j,
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L(xkeax) =
[

(

k
k−j

)

p(j)(a)xk−j +
(

k
k−j−1

)

p(j+1)(a)xk−j−1 + · · · + p(k)(a)
]

eax.

Then we have

L(xj+meax) =
[(

j+m
m

)

p(j)(a)xm +
(

j+m
m−1

)

p(j+1)(a)xm−1 + · · · + p(j+m)(a)
]

eax

L(xj+m−1eax) =
[(

j+m−1
m−1

)

p(j)(a)xm−1 +
(

j+m−1
m−2

)

p(j+1)(a)xm−2 + · · · + p(j+m−1)(a)
]

eax

...

L(xjeax) =
(

j
0

)

p(j)(a)eax.

Using these computations in (2.36) and noting that (2.33), we see that ψ satisfies

(2.32) if and only if

c0
(

j+m
m

)

p(j)(a) = b0,

c0
(

j+m
m−1

)

p(j+1)(a) + c1
(

j+m−1
m−1

)

p(j)(a) = b1,

...

c0p
(j+m)(a) + c1p

(j+m−1)(a) + · · · + cmp
(j)(a) = bm

This is a set of m+ 1 linear equations for the constants c0, c1, · · · , cm. They have a

unique solution, which can be obtained by solving the equations in succession since

p(j)(a) 6= 0. Alternately, we see that the determinant of the coefficients is just
(

j+m
m

) (

j+m−1
m−1

)

· · · 1
[

p(j)(a)
]m+1 6= 0.

This completes the proof of the theorem.

The Justification of the annihilator method when the right side of L(y) = b(x) is

the sum of terms of the form P (x)eax can be reduced to Theorem 2.23, by noting

that if ψ1, ψ2 satisfy

L(ψ1) = b1, L(ψ2) = b2,

respectively, then ψ1 + ψ2 satisfies

L(ψ1 + ψ2) = b1 + b2.
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Chapter 3

Linear equations with variable

coefficients

3.1 Introduction

A linear differential equation of order n with variable coefficients is an equation of

the form

a0(x)y
(n) + a1(x)y

(n−1) + · · · + an(x)y = b(x),

where a0, a1, · · · , an, b are complex-valued functions on some real interval I. Points

where a0(x) = 0 are called singular points, and often the equation requires special

consideration at such points. Therefore in this chapter we assume that a0(x) 6= 0

on I. By dividing by a0, We can obtain an equation of the same form, but with a0

replaced by the constant 1. Thus we consider the equation

y(n) + a1(x)y
(n−1) + · · · + an(x)y = b(x) (3.1)

As in the case when a1, a2, · · · , an, are constants we designate the left side of (3.1)

by L(y). Thus

L(y) = y(n) + a1(x)y
(n−1) + · · · + an(x)y (3.2)

and (3.1) becomes simply L(y) = b(x). If b(x) = 0 for all x on I we say L(y) = 0 is a

homogeneous equation, whereas if b(x) 6= 0 for some x in I, the equation L(y) = b(x)

is called a non-homogeneous equation.

We give a meaning to L itself as an operator which takes each function φ, which has
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n derivatives on I, into the function L(φ) on I whose value at x is given by

L(φ)(x) = φ(n)(x) + a1φ
(n−1)(x) + · · · + anφ(x).

Thus a solution of (3.1) on I is a function φ on I which has n derivatives there, and

which satisfies L(φ) = b.

We assume that the complex-valued functions a1, · · · , an, b are continuous on some

real interval I. and L(y) will always denote the expresion (3.2).

3.2 Initial value problem for the homogeneous equa-

tion

Theorem 3.1. (Existence Thorem) Let a1, · · · , an be continuous functions on an

interval I containing the point x0. If α1, α2, · · · , αn are any n constants, there erists

a solution φ of

L(y) = y(n) + a1(x)y
(n−1) + · · · + an(x)y = 0

on I satisfying

φ(x0) = α1, φ′(x0) = α2, · · · , φ(n−1)(x0) = αn.

We stress two things about this theorem :

(i) the solution exists on the entire interval I where a1, a2, · · · , an are continuous,

and

(ii) every initial value problem has a solution.

Neither of these results may be true if the coefficient of y(n) vanishes somewhere in

I.

For example, consider the equation

xy′ + y = 0,

whose coefficients are continuous for all real x. This equation and the initial

condition y(1) = 1 has the solution φ1, where

φ1(x) =
1

x
.

But this solution exists only for 0 < x <∞. Also, if φ is any solution, then

xφ(x) = c,

where c is some constant. Thus only the trivial solution (c = 0) exists at the

origin, which implies that the only initial value problem
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xy′ + y = 0, y(0) = α1,

which has a solution is the one for which α1 = 0.

Just as in the case where the coefficients aj, (j = 1, · · · , n) are constants, the

uniqueness of the solution φ given in Theorern 3.1 is demonstrated with the aid of

an estimate for

φ(x) =
[

|φ(x)|2 + |φ′(x)|2 + · · · +
∣

∣φ(n−1)(x)
∣

∣

2
]1/2

,

Remark 3.2. If I is a closed bounded interval, that is, of the form a ≤ x ≤ b with

a, b real, and if the aj are continuous on I, then there always exiut finite constants

by such that |aj(x)| ≤ bj, on I.

Theorem 3.3. Let b1, · · · , bn, be non-negative constants such that for all x in I.

|aj(x)| ≤ bj , (j = 1, 2, · · · , n)

and define k by

k = 1 + b1 + b2 + · · · + bn.

If x0 is a point in I, and φ is a solution of L(y) = 0 on I, then

‖φ(x0)‖ e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek|x−x0| (3.3)

for all x in I.

Proof. Since L(φ) = 0 we have

φ(n) = −a1(x)φ
(n−1)(x) − · · · − an(x)φ(x),

and therefore

|φ(n)| = |a1(x)φ
(n−1)(x) + · · · + an(x)φ(x)|

≤ |a1(x)||φ(n−1)(x)| + cdots+ |an(x)||φ(x)|
≤ b1|φ(n−1)(x)| + cdots+ bn|φ(x)|

Hence

|φ(n)| ≤ b1|φ(n−1)(x)| + cdots+ bn|φ(x)| (3.4)
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Now letting u(x) = ‖φ(x)‖2 for x ∈ I. Then

u(x) = |φ(x)|2 + |φ′(x)|2 + · · · + |φ(n−1)(x)|2

= φ(x)φ(x) + φ′(x)φ′(x) + · · · + φ(n−1)(x)φ(n−1)(x), since |z|2 = zz

= φ(x)φ(x) + φ′(x)φ′(x) + · · · + φ(n−1)(x)φ(n−1)(x)

Then

u′(x) = φ(x)φ′(x) + φ′(x)φ(x) + φ′(x)φ′′(x) + φ′′(x)φ′(x)

+ · · · + φ(n)(x)φ(n−1)(x) + φ(n−1)(x)φ(n)(x)

|u′(x)| = |φ(x)φ′(x) + φ′(x)φ(x) + φ′(x)φ′′(x) + φ′′(x)φ′(x)

+ · · · + φ(n)(x)φ(n−1)(x) + φ(n−1)(x)φ(n)(x)|
≤ |φ(x)φ′(x)| + |φ′(x)φ(x)| + |φ′(x)φ′′(x)| + |φ′′(x)φ′(x)|

+ · · · + |φ(n)(x)φ(n−1)(x)| + |φ(n−1)(x)φ(n)(x)|
= |φ(x)||φ′(x)| + |φ′(x)||φ(x)| + |φ′(x)||φ′′(x)| + |φ′′(x)||φ′(x)|

+ · · · + |φ(n)(x)||φ(n−1)(x)| + |φ(n−1)(x)||φ(n)(x)|
= |φ(x)||φ′(x)| + |φ′(x)||φ(x)| + |φ′(x)||φ′′(x)| + |φ′′(x)||φ′(x)|

+ · · · + |φ(n)(x)||φ(n−1)(x)| + |φ(n−1)(x)||φ(n)(x)|
= 2|φ(x)||φ′(x)| + 2|φ′(x)||φ′′(x)| + · · · + 2|φ(n−1)(x)||φ(n)(x)|
≤ 2 |φ(x)||φ′(x)| + 2 |φ′(x)||φ′′(x)| + · · · +

2|φ(n−1)(x)| (|a1(x)||φ(n−1)(x)| + |a2(x)||φ(n−2)(x)| + · · · + |an(x)||φ(x)|)
≤ (1 + |bn|)|φ(x)|2 + (2 + |b(n−1)|)|φ′(x)|2 + · · · +

(2 + |b1|)|φ(n−2)(x)|2 + (1 + 2|b1| + |b2| + · · · + |bn|)|φ(n−1)(x)|2, using(3.4)

≤ 2(1 + |b1| + |b2| + · · · + |bn|)|φ(x)|2 + 2(1 + |b1| + |b2| + · · · + |bn|)|φ′(x)|2

+ · · · + 2(1 + |b1| + |b2| + · · · + |bn|)|φ(n−2)(x)|2

+2(1 + |b1| + |b2| + · · · + |bn|)|φ(n−1)(x)|2

= 2(1 + |b1| + |b2| + · · · + |bn|)
(

|φ(x)|2 + |φ′(x)|2 + · · · + |φ(n−1)(x)|2
)

= 2 k u(x), where k = 1 + |b1| + |b2| + · · · + |bn|

Therefore |u′(x)| ≤ 2 k u(x). That is −2 k u(x) ≤ u′(x) ≤ 2 k u(x).
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Take u′(x) ≤ 2 k u(x). Then

u′(x) − 2 k u(x) ≤ 0

e−2kxu′(x) + u(x)(−2ke−2kx) ≤ 0

(e−2kx u(x))′ ≤ 0

Let x0 < x
x
∫

x0

(e−2kt u(t))′ dt ≤ 0

e−2kx u(x) − e−2kx0 u(x0) ≤ 0

e−2kx u(x) ≤ e−2kx0 u(x0)

u(x) ≤ e2k(x−x0) u(x0)

‖φ(x)‖2 ≤ ‖φ(x0)‖2 e2k(x−x0)

‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x−x0)

Similarly taking −2 k u(x) ≤ u′(x) we can show that ‖φ(x0)‖ e−k(x−x0) ≤ ‖φ(x)‖.
Hence

‖φ(x0)‖ e−k(x−x0) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x−x0) when x0 < x (3.5)

In a similar way, we can show that

‖φ(x0)‖ e−k(x0−x) ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek(x0−x) when x < x0 (3.6)

Hence from (3.5) and (3.6), we have

‖φ(x0)‖ e−k|x−x0| ≤ ‖φ(x)‖ ≤ ‖φ(x0)‖ ek|x−x0|

where k = 1 + |b1| + |b2| + · · · + |bn|. Hence the theorem.

Theorem 3.4. (Uniqueness Theorem) Let α1, α2, · · · , αn be any n constants, and

let x0 be any real number. On any interval I containing x0 there exists at most one

solution φ of L(y) = 0 on I satisfying

φ(x0) = α1, φ′(x0) = α2, · · · , φ(n−1)(x0) = αn.

Proof. Suppose φ and ψ are two solutions of the initial value problem L(y) =

0, y(x0) = α1, y
′(x0) = α2, · · · , y(n−1)(x0) = αn on I. Then we have to

prove that φ(x) = ψ(x) for all x. Let χ = φ(x) − ψ(x). Even though the functions

51



aj are continuous on I they need not be bounded there. However, Let x be any

point on I other than x0. Let J be any closed bounded interval in I which contains

x, x0. On this interval the functions aj are bounded. That is |aj(x)| ≤ bj on J for

j = 1, 2, · · · , n.

Then L(χ) = L(φ) − L(ψ) = 0, and χ(x0) = 0, χ′(x0) = 0, · · · , χ(n−1)(x0) = 0.

Then ‖χ(x0)‖ = 0, and applying the inequality (3.3) to χ we see that ‖χ(x)‖ = 0

for all x in J . This implies that χ(x) = 0 for all x in J . Since x was chosen to be

any point in I other than x0, we have φ(x) = ψ(x) for all x in I.

3.3 Solution of the homogeneous equation

If φ1, φ2, · · · , φm are any m solutions of the n−th order equation L(y) = 0 on an

interval I, and c1, · · · , cm are any m constants, then

L(c1φ1 + · · · + cmφm = c1L(φ1 + · · · + cmL(φm),

which implies that c1φ1 + · · · + cmφm is also a solution. In words, any linear

combination of solutions is again a solution. The trivial solution is the function

which is identically zero on I.

As in the case of an L with constant coefficients, every solution of L(y) = 0 is a

linear combination of any n linearly independent solutions. Recall that n functions

φ1, · · · , φn defined on an interval I are said to be linearly independent if the only

constants c1, · · · , cn such that

c1φ1(x) + · · · + cnφn(x) = 0

for all x in I are the constants

c1 = c2 = · · · + cn = 0.

we construct n linearly independent solutions, and show that every solution is a

linear combination of these. we show that every solution is a linear combination of

any n linearly independent solutions.

Theorem 3.5. There exist n linearly independent solutions of L(y) = 0 on I.

Proof. Let us consider the initial value problem

L(y) = y(n) + a1y
(n−1) + · · · + any = 0

with initial condition

y(x0) = 1, y′(x0) = 0, · · · , y(n−1)(x) = 0
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Then by existence and uniqueness theorem, the above initial value problem has a

unique solution. Let it be φ1. Then

L(φ1) = 0, φ1(x0) = 1, φ′
1(x0) = 0, · · · , φ(n−1)

1 (x) = 0.

Now let us consider another initial value problem

L(y) = y(n) + a1y
(n−1) + · · · + any = 0

with initial condition

y(x0) = 0, y′(x0) = 1, · · · , y(n−1)(x) = 0

Then again by existence and uniqueness theorem, the above initial value problem

has a unique solution. Let it be φ2. Then

L(φ2) = 0, φ2(x0) = 0, φ′
2(x0) = 1, · · · , φ(n−1)

2 (x) = 0.

Continuing in this manner after n steps we get n functions φ1, φ2, · · · , φn solutions

of L(y) = 0 satisfying

φ
(i−1)
i (x0) = 1 for all i = 1, 2, · · · , n

φ
(j−1)
i (x0) = 0 for all j = 1, 2, · · · , n, j 6= i

(3.7)

Now let us show that {φ1, φ2, · · · , φn} is linearly independent.

Suppose there are constants c1, c2, · · · , cn such that c1φ1 + · · · + cnφn = 0

for all x in I. Differentiating we see that

c1φ1(x) + c2φ2(x) + · · · + cnφn(x) = 0 (3.8)

for all x in I. Then also

c1φ
′
1(x) + c2φ

′
2(x) + · · · + cnφ

′
n(x) = 0

c1φ
′′
1(x) + c2φ

′′
2(x) + · · · + cnφ

′′
n(x) = 0

...

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · · + cnφ

(n−1)
n (x) = 0

(3.9)

for all x in I. In particular, the equations (3.8) and (3.9) must hold at x0. Putting

x = x0 in (3.8) we find, using (3.7), that c1 (1) + c2 (0) + · · ·+ cn (0) = 0, or c1 = 0.

Putting x = x0 in the equations (3.9) we obtain c2 = c3 = · · ·+ cn = 0 and thus the
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solutions φ1, · · · , φn are linearly independent.

Theorem 3.6. Let φ1, · · · , φn be the n solutions of L(y) = 0 on I satisfying (3.7).

If φ is any solution of L(y) = 0 on I, there are n constants c1, · · · , cn such that

φ = c1φ1 + · · · + cnφn.

Proof. Let φ be a solution of L(y) = 0 on I. Let φ(x0) = α1, φ
′(x0) = α2 · · · , φ(n−1)(x0) =

αn.

Consider the function

ψ = α1φ1 + α2φ2 + · · · + αnφn.

Then L(ψ) = α1L(φ1) + α2L(φ2) + · · · + αnL(φn) = 0 and so ψ is a solution of

L(y) = 0 and clearly

ψ(x0) = α1φ1(x0) + α2φ2(x0) + · · · + αnφn(x0) = α1,

since φ1(x0) = 1, φ2(x0) = 0, · · · , φn(x0) = 0.

Similarly using the other relations in (3.7) we see that

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn.

Thus psi is a solution of L(y) = 0 having the same initial conditions at x0 as φ.

By uniqueness Theorem, we must have φ = ψ, that is

φ = α1φ1 + α2φ2 + · · · + αnφn.

We have proved the theorem with constants c1 = α1, c2 = α2, · · · , cn = αn.

Remark 3.7. A set of functions which has the property that, if φ1, φ2 belong to

the set, and c1, c2 are any two constants, then c1φ1 + c2φ2 belongs to the set also is

called a linear space of functions. We have just seen that the set of all solutions of

L(y) = 0 on an interval I is a linear space of functions. If a linear space of functions

contains n functions φ1, φ2, · · · , φn, which are linearly independent and such that

every function in the space can be represented as a linear combination of these, then

φ1, · · · , φn is called a basis for the linear space, and the dimension of the linear space

is the integer n. Then the functions φ1, · · · , φn satisfying the initial conditions (3.7)

form a basis for the solutions of L(y) = 0 on I, and this linear space of functions

has dimension n.
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3.4 The Wronskian and linearly independent

In order to show that any set of n linearly independent solutions of L(y) = 0 can serve

as a basis for the solutions of L(y) = 0, we consider the WronskianW (φ1, φ2, · · · , φn)

of any n solutions φ1, φ2, · · · , φn.

Definition 3.8. The wronskian W (φ1, φ2, · · · , φn) of n functions φ1, φ2, · · · , φn hav-

ing n− 1 derivatives on an interval I is defined to be the determinant function

W (φ1, φ2, · · · , φn) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 · · · φn

φ′
1 · · · φ′

n
...

...

φ
(n−1)
1 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Theorem 3.9. If φ1, φ2, · · · , φn are solutions of L(y) = 0 on an interval I, then

they are linearly independent there if and only if W (φ,φ2, · · · , φn)(x) 6= 0 for all x

in I.

Proof. First suppose W (φ1, φ2, · · · , φn)(x) 6= 0 for all x in I, and let c1, c2, · · · , cn
be constants such that

c1φ1(x) + c2φ2(x) + · · · + cnφn(x) = 0 (3.10)

for all x in I. Then also

c1φ
′
1(x) + c2φ

′
2(x) + · · · + cnφ

′
n(x) = 0

c1φ
′′
1(x) + c2φ

′′
2(x) + · · · + cnφ

′′
n(x) = 0

...

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · · + cnφ

(n−1)
n (x) = 0

(3.11)

for all x in I. For a fixed x the equations (3.10), (3.11) are linear homogeneous equa-

tions satisfied by c1, c2, · · · , cn. Hence the matrix representation of the equations

(3.10) and (3.11) is
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











φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

























c1

c2
...

cn













=













0

0
...

0













Since the determinant of the coefficients of c1, c2 · · · , cn in (3.10) and (3.11) is just

W (φ1, φ2, · · · , φn)(x) which is not zero. Therefore the matrix













φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n













is non-singular. Hence the above matrix equation has unique solution namely












0

0
...

0













. That is c1 = 0, c2 = 0, · · · , cn = 0. Therefore c1 = 0, c2 = 0, · · · , cn = 0 is

the only solution of (3.10) and (3.11). This proves that φ1, φ2, · · · , φn are linearly

independent on I.

Conversely, assume φ1, φ2 are linearly independent on I. Suppose that there is an

x0 in I such that W (φ1, φ2, · · · , φn)(x0) = 0. This implies that the system of linear

equations

c1φ1(x0) + c2φ2(x0) + · · · + cnφn(x0) = 0

c1φ
′
1(x0) + c2φ

′
2(x0) + · · · + cnφ

′
n(x0) = 0

c1φ
′′
1(x0) + c2φ

′′
2(x0) + · · · + cnφ

′′
n(x0) = 0

...

c1φ
(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · · + cnφ

(n−1)
n (x0) = 0

(3.12)

has a solution c1, c2, · · · , cn, where at least one of these numbers is not zero. Let

c1, c2, · · · , cn be such a solution and consider the function ψ = c1φ1+c2φ2+· · ·+cnφn.

Now L(ψ) = 0, and from (3.11) we see that

ψ(x0) = 0, ψ′(x0) = 0, · · · , ψ(n−1)(x0) = 0.

From the Uniqueness theorem (Theorem 3.4), we infer that ψ(x) = 0 for all x in I
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and thus

c1φ(x) + c2φ2(x) + · · · + cnφn(x) = 0

for all x in I. But this contradicts the fact that φ1, φ2 · · · , φn are linearly in-

dependent on I. Thus the superposition that there was a point x0 in I such

that W (φ1, φ2, · · · , φn) = 0 must be false. We have consequently proved that

W (φ1, φ2, · · · , φn) 6= 0 for all x in I.

Theorem 3.10. Let φ1, φ2, · · · , φn be n linearly independent solutions of L(y) = 0

on an interval I. If φ is any solution of L(y) = 0 on I, it can be represented in the

form

φ = c1φ1 + · · · + cnφn,

where c1, c2, · · · , cn are constants. Thus any set of n linearly independent solutions

of L(y) = 0 on I is a basis for tlhe solutions of L(y) = 0 on I.

Proof. Let x0 be a point in I, and suppose

φ(x0) = α1, φ
′(x0) = α2, · · · , φ(n−1)(x0) = αn.

We show that there exist unique constants c1, c2, · · · , cn such that

ψ = c1φ1 + · · · + cnφn

is a solution of L(y) = 0 satisfying

ψ(x0) = α1, ψ
′(x0) = α2, · · · , ψ(n−1)(x0) = αn.

By the uniqueness result Theorem 3.4 we then have φ = ψ, or

φ = c1φ1 + · · · + cnφn.

The initisl conditions for ψ are equivalent to the following equations for c1, · · · , cn :

c1φ1(x0) + · · · + cnφn(x0) = α1

c1φ
′
1(x0) + · · · + cnφ

′
n(x0) = α2

...

c1φ
(n−1)
1 (x0) + · · · + cnφ

(n−1)
n (x0) = αn

(3.13)

This is a set of n linear equations for c1, · · · , cn. The determinant of the coefficients

is W (φ1, · · · , φn)(x0), which is not zero since φ1, · · · , φn are linearly independent

(Theorem 3.9). Therefore there is a unique solution c1, · · · , cn of the equations

(3.13), and this completes the proof.
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Theorem 3.11. If φ1, φ2, · · · , φn are two solutions of L(y) = 0 on an interval I

containing a point x0, then

W (φ1, φ2, · · · , φn)(x) = exp



−
x
∫

x0

a1(t) dt



 W (φ1, φ2, · · · , φn)(x0). (3.14)

Proof. We first prove the result for the case n = 2 and then give a proof which is

valid for general n.

Case 1: n = 2

In this case W = φ1φ
′
2 − φ′

1φ2, and therefore

W ′ = φ′
1φ

′
2 + φ1φ

′′
2 − φ′′

1φ2 − φ′
1φ

′
2

= φ1φ
′′
2 − φ′′

1φ2

Let φ1, φ2 be two solutions of L(y) = 0. Then we have

φ′′
1 + a1φ

′
1 + a2φ1 = 0 and φ′′

2 + a1φ
′
2 + a2φ2 = 0

Thus

W ′(φ1, φ2) = φ1(−a1φ
′
2 − a2φ2) − (−a1φ

′
1 − a2φ1)φ2)

= −W1(φ1φ
′
2 − φ′

1φ2)

= −a1W (φ1, φ2)

we see that W (φ1, φ2) satisfies the linear first order equation y′ + a1(x)y = 0.

That is W ′ + a1W = 0.

Hence W (φ1, φ2)(x) = c exp

[

−
x
∫

x0

a1(t) dt

]

, where c is some constant. By putting

x = x0 we obtain c = W (φ1, φ2)(x0),and thus

W (φ1, φ2)(x) = exp

[

−
x
∫

x0

a1(t) dt

]

W (φ1, φ2)(x0).

Case 2: For general n

Let φ1, φ2, · · · , φn be n solutions of L(y) = 0. Let W = W (φ1, φ2, · · · , φn). From

the definition of W , its derivatives W ′ is the sum of n determinants. That is,

W ′ = V1 + V2 + · · ·+ Vn, where Vk differ from W only in its k−throw and k−th row

of Vk is obtained by differentiating k−th row of W . Thus
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W ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ′
1 φ′

2 · · · φ′
n

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′′
1 φ′′

2 · · · φ′′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ · · ·+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−2)
1 φ

(n−2)
2 · · · φ

(n−2)
n

φ
(n)
1 φ

(n)
2 · · · φ

(n)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The first n − 1 determinants V1, V2, · · · , Vn−1 are all zero, since they each have

two identical rows. Since φ1, φ2, · · · , φn are solutions of L(y) = 0, we have

φ
(n)
i = −a1φ

(n−1)
i − a2φ

(n−2)
i − · · · − anφ1.

Therefore,

W ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

−
n−1
∑

j=0

an−jφ
(j)
1 −

n−1
∑

j=0

an−jφ
(j)
2 · · · −

n−1
∑

j=0

an−jφ
(j)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The value of this determinant is unchanged if we multiply any row by a number

and add to the last row. Hence

W ′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

−a1φ
(n−1)
1 −a1φ

(n−1)
2 · · · −a1φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −a1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1 φ2 · · · φn

φ′
1 φ′

2 · · · φ′
n

...
...

...

φ
(n−1)
1 φ

(n−1)
2 · · · φ

(n−1)
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −a1 W

Thus W satisfies the first order equation W ′ + a1W = 0.
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Hence W (x) = c exp

[

−
x
∫

x0

a1(t) dt

]

, where c is some constant. Setting x = x0

we see that c = W (x0), and thus

W (x) = exp

[

−
x
∫

x0

a1(t) dt

]

W (x0),

That is W (φ1, φ2, · · · , φn)(x) = exp

[

−
x
∫

x0

a1(t) dt

]

W (φ1, φ2, · · · , φn)(x0),

Corollary 3.12. If the coefficients ak of L are constants, then

W (φ1, φ2, · · · , φn)(x) = e−a1(x−x0) W (φ1, φ2, · · · , φn)(x0)

3.5 Reduction of the order of a homogeneous equa-

tion

Suppose we have found by some means one solution φ1 of the equation

L(y) = y(n) + a1(x)y
(n−1) + · · · + an(x)y = 0.

It is then possible to take advantage of this information to reduce the order of the

equation to be solved by one. The idea is the same one employed in the variation

of constants method. We try to find solutions φ of L(y) = 0 of the form φ = uφ1,

where u is some function.

Theorem 3.13. Let φ1 be a solution of L(y) = 0 on an interval I, and suppose

φ1(x) 6= 0 on I. If v2, v3, · · · , vn is any basis on I for the solutions of the linear

equation in v of order n−1, and if vk = u′k, (k = 2, · · · , n) then φ1, u2φ1, · · · , unφ1

is a basis for the solutions of L(y) = 0 on I.

Proof. Let φ1(x) 6= 0 be a solution of L(y) = 0 on an interval I. Let u be a function

on I such that φ = uφ1 is a solution of L(y) = 0. Then we have

0 = (uφ1)
(n) + a1(x)(uφ1)

(n−1) + · · · + an−1(x)(uφ1)
′ + an(x)(uφ1)

= u(n)φ1 + · · · + uφ
(n)
1 + a1u

(n−1)φ1 + · · · + a1uφ
(n−1)
1 + · · ·

+an−1u
′φ1 + an−1uφ

′
1 + anuφ1.

The coefficient of u in this equation is just L(φ1) = 0. Therefore, if v = u′, this is a
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linear equation of order n− 1 in v,

φ1v
(n−1) + · · · +

[

nφ
(n−1)
1 + a1(n− 1)φ

(n−2)
1 + · · · + an−1φ1

]

v = 0 (3.15)

The coefficient of v(n−1) is φ1, and hence if φ1(x) 6= 0 on an interval I this equation

has n− 1 linearly independent solutions v2, v3, · · · , vn on I. If x0 is some point in I

and

uk =
x
∫

x0

vk(t) dt, k = 2, 3, · · · , n

Then we have u′k = vk, and the functions

φ1, u2φ1, · · · , unφ1 (3.16)

are solutions of L(y) = 0. Moreover these functions form a basis for the solutions of

L(y) = 0 on I. For suppose we have constants c1, c2, · · · , cn such that

c1φ1 + c2u2φ1 + · · · + cnunφ1 = 0.

Since φ1(x) 6= 0 on I this implies

c1 + c2u2 + · · · + cnun = 0, (3.17)

and differentiating we obtain

c2u
′
2 + c3u

′
3 + · · · + cnu

′
n = 0, or c2v2 + c3v3 + · · · + cnvn = 0.

Since v2, v3, · · · , vn are linearly independent on I we have

c2 = c3 = · · · = cn = 0.

and from (3.17) we obtain c1 = 0 also. Thus the functions in (3.16) form a basis for

the solutions of L(y) = 0 on I.

Theorem 3.14. If φ1 is a solution of L(y) = y′′ + a1(x)y
′ + a2(x)y = 0 on an

interval I, and φ1(x) 6= 0 on I, a second solution φ2 of L(y) = 0 on I is given by

φ2(x) = φ1(x)

x
∫

x0

1

[φ1(s)]
2 exp



−
x
∫

x0

a1(t) dt



 ds.

The functions φ1, φ2 form a basis for the solutions of L(y) = 0 on I.
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Proof. Let L(y) = y′′ + a1(x)y
′ + a2(x)y = 0 and if φ1 is a solution on I we have

L(uφ1) = (uφ1)
′′ + a1(uφ1)

′ + a2(uφ1)

= u′′φ1 + 2u′φ′
1 + uφ′′

1 + a1u
′φ1 + a1uφ

′
1 + a2uφ1

= u′′φ1 + u′(2φ′
1 + a1φ1).

Thus if v = u′ and u is such that L(uφ1) = 0,

φ1v
′ + (2φ′

1 + a1φ1)v = 0. (3.18)

But (3.18) is a linear equation of order one, and can always be solved explicitly

provided φ1(x) 6= 0 on I. Indeed v satisfies

φ2
1v

′ + (2φ1φ
′
1 + a1φ

2
1)v = 0, (3.19)

which is just (3.18) multiplied by φ1. Thus

(φ2
1v)

′ + a1(φ
2
1v) = 0,

which implies that

φ2
1(x)v(x) = c exp

[

−
x
∫

x0

a1(t) dt

]

,

where x0 is a point in I and c is a constant. Since any constant multiple of a

solution of (3.19) is again a solution, we see that

v(x) =
1

[φ1(s)]
2 exp



−
x
∫

x0

a1(t) dt



 ds.

is a solution of (3.19), and also of (3.18). Therefore two independent solutions of

L(y) = 0 on I are φ1 and φ2 where

φ2(x) = φ1(x)

x
∫

x0

1

[φ1(s)]
2 exp



−
x
∫

x0

a1(t) dt



 ds.

Example 3.15. Consider the equation y′′ − 2

x2
y = 0, (0 < x <∞).

Let φ(x) = x2. Then it can be easily verified that the φ1 is a solution on 0 < x <∞
and since the function does not vanish on this interval there is another independent

solution φ2 of the form φ2 = uφ1. If v = u′ we find that v satisfies

x2v′ + 4xv = 0 or xv′ + 4v = 0.
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Then v′ +
4

x
= 0. This is a linear first order equation. A solution for this is given

by v(x) = x−4, (0 < x <∞), and therefore u′ = v = x−4.

Hence u(x) =
∫

v(x)dx = −1
3x3 and so φ2(x) = u(x)φ1(x) = −1

3x
.

But since any constant times a solution is a solution, we may choose for a second

solution φ2(x) = 1
x
. Thus x2, 1

x
are solutions on 0 < x <∞.

Since W (φ1, φ2)(x) = W (x2, 1
x
)(x) = −3 6= 0, {x2, 1

x
} is linearly independent.

Example 3.16. Consider the equation x2y′′−7xy′ +15y = 0, φ1(x) = x3, x > 0.

Clearly φ1(x) = x3 satisfies the given equation. Also

φ2(x) = u(x)φ1(x) = φ1(x)

x
∫

x0

1

[φ1(x)]
2 exp



−
x
∫

x0

a1(x) dx



 dx

= x3

∫

1

x6
e
∫

7

x
dxdx

=
x5

2

Since any constant times a solution is a solution we may choose a second solu-

tion φ2(x) = x5. Also, since W (φ1, φ2) = 2x2 6= 0 as x 6= 0, {x3, x5} is linearly

independent.

3.6 The non-homogeneous equation

Theorem 3.17. Let b be continuous on an interval I, and let φ1, · · · , φn be n linearly

independent solutions of L(y) = y(n) + a1(x)y
(n−1) + · · · + an(x)y = 0 on I. Every

solution ψ of L(y) = y(n) + a1(x)y
(n−1) + · · · + an(x)y = b(x) can be written as

ψ = ψp + c1φ1 + c2φ2 + · · · + cnφn

where ψp is a particular solution of L(y) = b(x) and c1, c2, · · · , cn are constants.

Every such ψ is a solution of L(y) = b(x). A particular solution is given by

ψp =
n
∑

k=1

φk(x)

x
∫

x0

Wk(t) b(t)

W (φ1, φ2, · · · , φn)(t)
dt.

Proof. Let a1(x), a2(x), · · · , an(x), b(x) be a continuous function on an interval I,

and consider the equation
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L(y) = y(n) + a1(x)y
(n−1) + · · · + an(x)y = b(x),

If ψp is a particular solution of L(y) = b(x) and ψ is any other solution, then

L(ψ − ψp) = L(ψ) − L(ψp) = b− b = 0.

Thus ψ−ψp is a solution of the homogeneous equation L(y) = 0, and this inplies

that any solution ψ of L(y) = b(x) can be written in the form

ψ = ψp + c1φ1 + c2φ2 + · · · + cnφn

where ψp is a particular solution of L(y) = b(x), the functions φ1, φ2, · · · , φn, are

n linearly independent solutions of L(y) = 0, and c1, c2, · · · , cn are constants.

To find a particular solution ψp, we proceed just as in the case n = 2, that is, we

use the variation of constants method. We try to find n functions u1, u2, · · · un so

that

ψp = u1φ1 + u2φ2 + · · · + unφn

is a solution. If

u′1φ1 + u′2φ2 + · · · + u′nφn = 0,

then

ψ′
p = u1φ

′
1 + u2φ

′
2 · · · + unφ

′
n

and if

u′1φ
′
1 + u′2φ

′
2 + · · · + u′nφ

′
n = 0,

then

ψ′′
p = u1φ

′′
1 + u2φ

′′
2 · · · + unφ

′′
n

Thus if u′1, u
′
2, · · · , u′n satisfy

u′1φ1 + u′2φ2 + · · · + u′nφn = 0

u′1φ
′
1 + u′2φ

′
2 + · · · + u′nφ

′
n = 0

...

u′1φ
(n−2)
1 + u′2φ

(n−2)
2 + · · · + u′nφ

(n−2)
n = 0

u′1φ
(n−1)
1 + u′2φ

(n−1)
2 + · · · + u′nφ

(n−1)
n = b

(3.20)

we see that
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ψp = u1φ1 + u2φ2 + · · · + unφn

ψ′
p = u1φ

′
1 + u2φ

′
2 + · · · + unφ

′
n

...

ψ(n−1)
p = u1φ

(n−1)
1 + u2φ

(n−1)
2 + · · · + unφ

(n−1)
n

ψ(n)
p = u1φ

(n)
1 + u2φ

(n)
2 + · · · + unφ

(n)
n + b

(3.21)

Hence L(ψp) = u1L(φ1) + u2L(φ2) + · · · + unL(φn) + b = b,

and indeed ψp, is a solution of L(y) = b(x). The whole problem is noW reduced

to solving the linear system (2.22) for u′1, u
′
2, · · · , u′n. The determinant of the co-

efficients is just W (φ1, φ2, · · · , φn), which is never zero when φ1, · · · , φn ae linearly

independent solutions of L(y) = 0. Therefore there are unique functions u′1, · · · , u′n,

satisfying (2.22). It is easy to see that solutions are given by

u′k(x) =
Wk(x) b(x)

W (φ1, φ2, · · · , φn)(x)
, (k = 1, 2, · · · , n)

where Wk is the determinant obtained from W (φ1, · · · , φn) by replacing the k−th

column (that is φk, φ
′
k, · · · , φ

(n−1)
k ) by 0, 0, · · · , 0, 1.

If x0 is any point in I we may take for uk the function given by

uk(x) =

x
∫

x0

Wk(t) b(t)

W (φ1, φ2, · · · , φn)(t)
dt, (k = 1, 2, · · · , n)

The particular solution ψp now takes the form

ψp =
n
∑

k=1

φk(x)

x
∫

x0

Wk(t) b(t)

W (φ1, φ2, · · · , φn)(t)
dt. (3.22)

Example 3.18. Consider the equation y′′ − 2

x2
y = x (0 < x <∞).

We have already see in section 3.5 that a basis for the solutions of the homogeneous

equation is given by

φ1(x) = x2, φ2(x) = x−1.

A solution ψp of the non-homogeneous equation has the form

ψp = u1x
2 + u2x

−1
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where u′1, u
′
2 satisfy

x2u′1 + x−1u′2 = 0 and 2xu′1 − x−2u′2 = x.

Now W (φ1, φ2)(x) = −3 and we find that u′1(x) =
1

3
, u′2(x) =

−x3

3
.

For u1, u2 we may take u1(x) =
x

3
, u2(x) = −x

4

12
,

and we see that ψp(x) = (x2)
(x

3

)

− (x−1)

(

x4

12

)

=
x3

3
− x3

12
=
x3

4
.

Every solution φ of given equation has the form φ(x) =
x3

4
+ c1x

2 + c2x
−1 where

c1, c2 are constants.

Since we can always solve the non-homogeneous equation L(y) = b(x) by using

algebraic methods and an integration, we now concentrate our attention on methods

for solving the homogeneous equation.

Exercise:

1. One solution of x2y′′ − 2y = 0 on 0 < x <∞ is φ1(x) = x2. Find all solutions of

x2y′′ − 2y = 2x− 1 on 0 < x <∞.

2. One solution of x2y′′ − xy′ + y = 0 on (x > 0), is φ1(x) = x. Find solution ψ of

x2y′′ − xy′ + y = x2 satisfying ψ(1) = 1, ψ(1) = 0.

3.7 Homogeneous equations with analytic coeffi-

cients

If g is a function defined on an interval I containing a point x0, we say that g is

analytic at x0 if g can be expanded in a power series about x0 which has a positive

radius of convergence. Thus g is analytic at x0 if it can be represented in the form

g(x) =
∞
∑

k=0

ck(x− x0)
k, (3.23)

where the ck are constants, and the series converges for |x − x0| < r0, r0 > 0. one

of the important properties of a function g which has the form (3.23), where the

series converges for |x− x0| < r0, is that all of its derivatives exist on |x− x0| < r0,

and they may be computed by differentiating the series term by term. Thus, for
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example

g′(x) =
∞
∑

k=1

kck(x− x0)
k−1,

and

g′′(x) =
∞
∑

k=2

k(k − 1)ck(x− x0)
k−2,

and the differentiated series converge on |x − x0| < r0 also. If the coefficients

a1, · · · , an of L are analyt1c at x0 1t turns out that the solutions are also. In

fact solutions can be computed by a formal algebraic process. We illustrate by

considering the following example.

Example 3.19. Consider the equation L(y) = y′′ − xy = 0. Here a1(x) = 0 and

a2(x) = −x, and hence a1(x), a2(x) are analytic for all real x0. Now we try for the

series solution. Consider the series

φ(x) =
∞
∑

k=0

ckx
k

Then

φ′(x) =
∞
∑

k=1

kckx
k−1

φ′′(x) =
∞
∑

k=2

k(k − 1)ckx
k−2 =

∞
∑

k=0

(k + 2)(k + 1)ck+2x
k.

Also

xφ(x) =
∞
∑

k=0

ckx
k+1 =

∞
∑

k=1

ck−1x
k .

Then

φ′′(x) − xφ(x) =
∞
∑

k=0

(k + 2)(k + 1)ck+2x
k −

∞
∑

k=1

ck−1x
k

= 2c2 +
∞
∑

k=1

[(k + 2)(k + 1)ck+2 − ck−1]x
k.

In order for φ to be a solution of L(y) = 0 we must have

φ′′(x) − xφ(x) = 0.

That is 2c2 +
∞
∑

k=1

[(k + 2)(k + 1)ck+2 − ck−1] x
k = 0,

This is true only if all the coefficients of the powers of x are zero. Thus

2c2 = 0, (k + 2)(k + 1)ck+2 − ck−1 = 0, (k = 1, 2, · · · ).
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This gives an infinite set of equations, which can be solved for the ck.

Thus, for k = 1, we have 3.2c3 = c0. That is c3 =
c0
3.2

.

Then for k = 2 we have c4 =
c1
4.3

.

Continuing in this way we see that

c5 =
c2
5.4

= 0, c6 =
c3
6.5

=
c0

6.5.3.2
, c7 =

c4
7.6

=
c1

7.6.4.3
.

It can be shown by induction that

c3m =
c0

2.3.5.6. · · · (3m− 1)3m
, (m = 1, 2, 3, · · · ),

c3m+1 =
c1

3.4.6.7. · · · 3m(3m+ 1)
, (m = 1, 2, 3, · · · ),

c3m+2 = 0 (m = 0, 1, 2, · · · ).

Thus all the constants are determined in terms of c0 and c1. Collecting together

terms with c0 and c1 as a factor we have

φ(x) =
∞
∑

k=0

ckx
k

= c0 + c1x+
∞
∑

k=2

ckx
k

= c0 + c1x+
∞
∑

m=1

c0 x
3m

2.3.5.6. · · · (3m− 1)3m
+

∞
∑

m=1

c1 x
3m+1

3.4.6.7. · · · 3m(3m+ 1)

= c0

[

1 +
∞
∑

m=1

x3m

2.3.5.6. · · · (3m− 1)3m

]

+ c1

[

x+
∞
∑

m=1

x3m+1

3.4.6.7. · · · 3m(3m+ 1)

]

Let φ1, φ2 represent the two series in the brackets. Thus

φ1(x) = 1 +
∞
∑

m=1

x3m

2.3.5.6. · · · (3m− 1)3m

φ2(x) = x+
∞
∑

m=1

x3m+1

3.4.6.7. · · · 3m(3m+ 1)

(3.24)

Thus we have shown that φ satisfies y′′ − xy = 0 for any two constants c0, c1. In
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Particular, the choice c0 = 1, c1 = 0 shows that φ1 satisfies this equation, and the

choice c0 = 0, c1 = 1 shows that φ2 also satisfies the equation. Next we have to

check the convergence of the series φ1(x), φ2(x). It can be checked easily by ratio

test that both series converges for all finite x.

Let us consider the series for φ1(x). Writing it as

φ1(x) = 1 +
∞
∑

m=1

dm(x), where dm(x) =
∞
∑

m=1

x3m

2.3.5.6. · · · (3m− 1)3m

we see that

dm+1

dm

=
x3m+3

2.3.5.6. · · · (3m− 1)(3m)(3m+ 2)(3m+ 3)
× 2.3.5.6. · · · (3m− 1)(3m)

x3m

=
x3

(3m+ 2)(3m+ 3)
∣

∣

∣

∣

dm+1

dm

∣

∣

∣

∣

=

∣

∣

∣

∣

x3

(3m+ 2)(3m+ 3)

∣

∣

∣

∣

=
|x|3

(3m+ 2)(3m+ 3)
,

which tends to 0 as m→ ∞, provided only that |x| <∞. Hence φ1(x) is convergent.

In the similar way, we can prove that φ2(x) is convergent.

Next to check φ1(x), φ2(x) are linearly independent solutions, it is clear from the

series (3.24) defining φ1 and φ2 that

φ1(0) = 1, φ2(0) = 0, φ′
1(0) = 0, φ′

2(0) = 1.

and therefore W (φ1, φ2)(0) =

∣

∣

∣

∣

∣

φ1(0) φ2(0)

φ′
1(0) φ′

2(0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

∣

= 1 6= 0.

Hence φ1, φ2 are linearly independent.

Theorem 3.20. (Existence Theorem for Analytic Coefficients) Let x0 be a real

number and suppose that the coefficients a1, a2, · · · , an in

L(y) = y(n) + a1y
(n−1) + · · · + any

has convergent power series expansions in powers of x−x0 on an interval |x−x0| <
r0, 0 > 0. If α1, α2, · · · , αn are any n constants, there exists a solution φ of the

problem

L(y) = 0, y(x0) = α1, , y(n−1)(x0) = αn,

with a power series expansion

φ(x) =
∞
∑

k=0

ck(x− x0)
k

69



convergent for |x − x0| < r0. We have k! ck = αk+1, (k = 0, 1, 2, · · · , n − 1), and

ck for k ≥ n may be computed in terms of c0, c1, · · · , cn−1 by substituting the above

series into L(y) = 0.

Exercise:

1. Find two linearly independent power series solutions(in powers of x) of the

following equations.

(a) y′′ + y = 0 (b) y′′ − xy′ + y = 0

(c) y′′ − x2y = 0 (d) y′′ + x3y′ + x2y = 0

3.8 The Legendre equation

Some of the important differential equations met in physical problems are second

order linear equations with analytic coefficients. One of these is the Legendre equa-

tion

L(y) = (1 − x2)y′′ − 2xy′ + α(α+ 1)y = 0 (3.25)

where α is a constant. If we write this equation as

y′′ − 2x

1 − x2
y′ +

α(α + 1)

1 − x2
y = 0,

we see that the functions a1, a2 given by

a1(x) =
−2x

1 − x2
, a2(x) =

α(α+ 1)

1 − x2

are analytic at x = 0. Indeed,
1

1 − x2
= 1 + x2 + x4 + · · · =

∞
∑

k=0

x2k,

and this series converges for |x| < 1. Thus a1 and a2 have hte series expansions

a1(x) =
∑∞

k=0(−2)x2k+1, a2(x) =
∞
∑

k=0

α(α+ 1)x2k,

which converge for |x| < 1. From Theorem 3.20 it follows that the solutions of

L(y) = 0 on |x| < 1 have convergent power series expansions there. We proceed to

find a basis for these solutions.

Let φ be any solution of the Legendre equation on |x| < 1, and suppose

φ(x) = c0 + c1x+ c2x
2 + · · · =

∞
∑

k=0

ckx
k. (3.26)
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We have φ′(x) = c1 + 2c2x+ 3c3x
2 + · · · =

∞
∑

k=0

kckx
k−1.

−2xφ′(x) =
∞
∑

k=0

−2kckx
k. (3.27)

φ′′(x) = 2c2x+ 3.2c3x+ · · · =
∞
∑

k=0

k(k − 1)ckx
k−2,

−x2φ′(x) =
∞
∑

k=0

k(k − 1)ckx
k. (3.28)

Note that φ′′(x) may also be written as

φ′′(x) =
∞
∑

k=0

(k + 2)(k + 1)ck+2x
k, (3.29)

From (3.26)-(3.29) we obtain

L(φ)(x) = (1 − x2)φ′′(x) − 2xφ′(x) + α(α + 1)φ(x)

L(φ)(x) =
∞
∑

k=0

(k + 2)(k + 1)ck+2x
k −

∞
∑

k=0

k(k − 1)ckx
k −

∞
∑

k=0

2kckx
k

+α(α+ 1)
∞
∑

k=0

ckx
k

=
∞
∑

k=0

[(k + 2)(k + 1)ck+2 − k(k − 1)ck − 2kck + α(α + 1)ck]x
k

=
∞
∑

k=0

[(k + 2)(k + 1)ck+2 + (α+ k + 1)(α− k)ck] x
k,

since −k(k− 1)− 2k+α(α+ 1) = −k(k+ 1) +α(α+ 1) = −k(k+ 1) +α(α+ 1) +

αk − αk = −k(α+ k + 1) + α(α + k + 1) = (α+ k + 1)(α− k).

For φ to satisfy L(φ) = 0 we must have all the coefficients of the powers of x equal

to zero. Hence

(k + 2)(k + 1)ck+2 + (α+ k + 1)(α− k)ck = 0, (k = 0, 1, 2, · · · ) (3.30)

This is the recursion relation which gives ck+2 in terms of ck. For k = 0 we have
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c2 = −(α+ 1)α

2
c0,

For k = 1 we get

c3 = −(α+ 2)(α− 1)

3.2
c1,

Similarly, for k = 2, 3 we obtain

c4 = −(α+ 3)(α− 2)

4.3
c2 =

(α+ 3)(α+ 1)α(α− 2)

4.3.2
c0

c5 = −(α+ 4)(α− 3)

5.4
c3 =

(α+ 4)(α+ 2)(α− 1)(α− 3)

5.4.3.2
c1

The pattern now becomes clear, and it follows by induction that for m = 1, 2, · · · ,

c2m = (−1)mα(α+ 1)(α+ 3) · · · (α+ 2m− 1)(α− 2)(α− 4) · · · (α− 2m+ 2)

(2m) !
c0,

c5 = (−1)m (α+ 2)(α+ 4) · · · (α+ 2m)(α− 1)(α− 3) · · · (α− 2m+ 1)

(2m+ 1) !
c1

All coefficients are determined in terms of c0, c1, and we must have

φ(x) = c0 φ1(x) + c1 φ2(x)

where

φ1(x) = 1+
∞
∑

m=1

(−1)mα(α + 1)(α+ 3) · · · (α+ 2m− 1)(α− 2)(α− 4) · · · (α− 2m+ 2)

(2m) !

φ2(x) = x+ (−1)m (α+ 2)(α+ 4) · · · (α+ 2m)(α− 1)(α− 3) · · · (α− 2m+ 1)

(2m+ 1) !

Both φ1, φ2 are solutions of the Legendre equation, those corresponding to the

choices

c0 = 1, c1 = 0 and c0 = 0, c1 = 1,

respectively. They form a basis for the solutions, since

φ1(0) = 1, φ2(0) = 0 ; φ′
1(0) = 0, φ′

2(0) = 1.

We notice that if α is a non-negative even integer n = 2m, (m = 0, 1, 2, · · · ),

then φ1 has only a finite number of non-zero terms. Indeed, in this case φ1 is a
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polynomial of degree n containing only even powers of x. For example,

φ1(x) = 1, (α = 0),

φ1(x) = 1 − 3x2, (α = 2),

φ1(x) = 1 − 10x2 +
35

3
x4, (α = 4).

The solution φ2 is not a polynomial in this case since none of the coefficients in the

series of φ2(x) vanish.

A similar situation occurs when α is a positive odd integer n. Then φ2 is a

polynomial of degree n having only odd powers of x, and φ1 is not a polynomial.

For example,

φ2(x) = x, (α = 1),

φ2(x) = x− 5

3
x3, (α = 3),

φ2(x) = x− 14

3
x3 +

21

5
x5, (α = 5).

We consider in more detail these polynomial solutions when α = n, non-negative

integer. The polynomial solution Pn, of degree n of

(1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0, (3.31)

Sstisfying Pn(1) = 1 is called the n−th Legendre polynomial. In order to justify this

definition we must show that there is just one such solution for each non-negative

integer n.

Let φ be the polynomial of degree n defined by

φ(x) =
dn

dxn
(x2 − 1)n.

This φ satisfies the Legendre equation (3.31). Indeed, let

u(x) = (x2 − 1)n.

Then we obtain by differentiating

u′(x) = n(x2 − 1)n−1(2x)

= 2nx(x2 − 1)n(x2 − 1)−1

(x2 − 1)u′(x) = 2nx(x2 − 1)n

(x2 − 1)u′(x) = 2nx u(x)

73



Thus (x2−1)u′(x)−2nx u(x) = 0. Differentiating this expression n+1 times yields

(x2 − 1)u(n+2) + 2x(n+ 1) u(n+1) + (n+ 1)n u(n) − 2nxu(n+1) − 2n(n+ 1) u(n) = 0.

Note: (fg)(n) = fg(n) +
(

n
1

)

f ′g(n−1) +
(

n
2

)

f ′′g(n−2) + · · · +
(

n
1

)

f (n−1)g′ + f (n)g.

Putting φ =
dn

dxn
(x2 − 1)n = u(n) we obtain

(x2 − 1)φ′′ + 2(n+ 1)xφ′ + n(n+ 1)φ− 2nxφ′ − 2n(n+ 1)φ = 0

(x2 − 1)φ′′ + 2xφ′ − n(n+ 1)φ = 0

(1 − x2)φ′′ − 2xφ′ + n(n+ 1)φ = 0

We have shown that φ satisfies (3.31). Thus φ is a solution of (3.31). This polynomial

φ satisfies

φ(1) = 2n n!.

This can be seen by noting that

φ(x) =
dn

dxn
(x2 − 1)n

=
dn

dxn
(x2 − 1)n

=
[

(x2 − 1)n
](n)

= [(x− 1)n(x+ 1)n](n)

= [(x− 1)n](n) (x+ 1)n + terms with (x− 1) as a factor

= n !(x+ 1)n + terms with (x− 1) as a factor.

Hence φ(1) = n !2n as stated.

It is clear that the function Pn given by

Pn(x) =
1

2nn !

dn

dxn
(x2 − 1)n

is the solution of (3.31) and it is the Legendre polynomial provided that Pn(1) = 1.

This Pn(x) is known as Rodrigues formula.
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Note:

P0(x) =
1

200 !
(x2 − 1)0 = 1

P1(x) =
1

211 !

d

dx
(x2 − 1) =

2x

2
= x

P2(x) =
1

222 !

d2

dx2
(x2 − 1)2 =

3

2
x2 − 1

2

P3(x) =
1

233 !

d3

dx3
(x2 − 1)3 =

1

2
(5x3 − 3x)

Properties of Legendre Polynomial

Generating function: The function G(t, x) given by

G(t, x) =
1√

1 − 2xt+ t2

is called generating function of Legendre polynomial.

Note: Expanding
1√

1 − 2xt+ t2
= (1− 2xt+ t2)−1/2 by binomial expansion we get

the relation
1√

1 − 2xt+ t2
=

∞
∑

n=0

Pn(x)tn.

Recurrence Relations:

1. (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x)

Proof: We know that
1√

1 − 2xt+ t2
=

∞
∑

n=0

Pn(x)tn.

Differentiating with respect to t we have

d

dt

(

1√
1 − 2xt+ t2

)

=
d

dt

( ∞
∑

n=0

Pn(x)tn

)

.

−1

2

−2(x− t)

(1 − 2xt+ t2)3/2
=

∞
∑

n=0

nPn(x)tn−1

(x− t)

(1 − 2xt+ t2)

1

(1 − 2xt+ t2)1/2
=

∞
∑

n=0

nPn(x)tn−1

(x− t)

(1 − 2xt+ t2)

∞
∑

n=0

Pn(x)tn =
∞
∑

n=0

nPn(x)tn−1

(x− t)
∞
∑

n=0

Pn(x)tn = (1 − 2xt+ t2)
∞
∑

n=0

nPn(x)tn−1
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∞
∑

n=0

xPn(x)tn−
∞
∑

n=0

Pn(x)tn−1 =
∞
∑

n=0

nPn(x)tn−1−
∞
∑

n=0

2nxPn(x)tn+
∞
∑

n=0

nPn(x)tn+1

∞
∑

n=0

xPn(x)tn −
∞
∑

n=0

Pn−1(x)t
n =

∞
∑

n=0

(n+ 1)Pn+1(x)t
n −

∞
∑

n=0

2nxPn(x)tn

+
∞
∑

n=0

(n− 1)Pn−1(x)t
n

∞
∑

n=0

(2n+ 1)xPn(x)tn =
∞
∑

n=0

(n+ 1)Pn+1(x)t
n +

∞
∑

n=0

nPn−1(x)t
n

Equating the coefficient of tn we have

(2n+ 1)xPn(x) = (n+ 1)Pn+1(x) + nPn−1(x).

2. (2n + 1)Pn(x) = P′
n+1

(x) − P′
n−1

(x)

Proof: We know that

Pk(x) =
1

2kk!

dk

dxk
(x2 − 1)k

P ′
k(x) =

d

dx

(

1

2kk!

dk

dxk
(x2 − 1)k

)

=
1

2kk!

dk

dxk

(

d

dx

(

(x2 − 1)k
)

)

=
1

2kk!

dk

dxk

(

k(x2 − 1)k−1(2x)
)

=
2k

2kk!

dk

dxk

(

x(x2 − 1)k−1
)

=
1

2k−1(k − 1)!

dk−1

dxk−1

(

d

dx

(

x(x2 − 1)k−1
)

)

=
1

2k−1(k − 1)!

dk−1

dxk−1

(

(k − 1)x(x2 − 1)k−2(2x) + (x2 − 1)k−1
)

P ′
k(x) =

1

2k−1(k − 1)!

dk−1

dxk−1

(

(x2 − 1)k−2
(

(2k − 1)x2 − 1
))

Thus for k = n+1 we have P ′
n+1(x) =

1

2nn!

dn

dxn

(

(x2 − 1)n−1
(

(2n+ 1)x2 − 1
))

,

From Rodrigues formula at n− 1, we have

Pn−1(x) =
1

2n−1(n− 1)!

dn−1

dxn−1
(x2 − 1)n−1

P ′
n−1(x) =

d

dx

(

1

2n−1(n− 1)!

dn−1

dxn−1
(x2 − 1)n−1

)
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P ′
n−1(x) =

2n

2nn!

(

dn

dxn
(x2 − 1)n−1

)

As a consequence we have

P ′
n+1(x) − P ′

n−1(x) =
1

2nn!

dn

dxn

(

(x2 − 1)n−1
(

(2n+ 1)x2 − 1
))

− 2n

2nn!

(

dn

dxn
(x2 − 1)n−1

)

=
1

2nn!

dn

dxn

[

((2n+ 1)x2 − 1)(x2 − 1)n−1 − 2n(x2 − 1)n−1
]

=
1

2nn!

dn

dxn

[

(x2 − 1)n−1(2nx2 + x2 − 1 − 2n)
]

=
1

2nn!

dn

dxn

[

(x2 − 1)n−1(2n(x2 − 1) + (x2 − 1))
]

=
1

2nn!

dn

dxn

[

(x2 − 1)n−1((2n+ 1)(x2 − 1))
]

=
1

2nn!

dn

dxn

[

(x2 − 1)n(2n+ 1)
]

=
2n+ 1

2nn!

dn

dxn

[

(x2 − 1)n
]

P ′
n+1(x) − P ′

n−1(x) = (2n+ 1)Pn(x)

Hence (2n+ 1)Pn(x) = P ′
n+1(x) − P ′

n−1(x)

3. xP′
n
(x) − P′

n−1
(x) = nPn(x)

Proof: We know that

1√
1 − 2xt+ t2

=
∞
∑

n=0

Pn(x)tn. (3.32)

Differentiating (3.32) with respect to t, we have

−1
2
(1 − 2xt+ t2)−3/2(−2x+ 2t) =

∞
∑

n=0

nPn(x)tn−1

(1 − 2xt+ t2)−3/2(x− t) =
∞
∑

n=0

nPn(x)tn−1 (3.33)

Differentiating (3.32) with respect to x, we have
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−1
2
(1 − 2xt+ t2)−3/2(−2t) =

∞
∑

n=0

P ′
n(x)tn

(1 − 2xt+ t2)−3/2(t) =
∞
∑

n=0

P ′
n(x)tn (3.34)

Dividing (3.33) by (3.34),

(x− t)(1 − 2xt+ t2)−3/2

t(1 − 2xt+ t2)−3/2
=

∑

n

nPn(x)tn−1

∑

n

P ′
n(x)tn

(x− t)

t
=

∑

n

nPn(x)tn−1

∑

n

P ′
n(x)tn

(x− t)
∑

n

P ′
n(x)tn = t

∑

n

nPn(x)tn−1

∑

n

xP ′
n(x)tn −

∑

n

P ′
n(x)tn+1 =

∑

n

nPn(x)tn

∑

n

xP ′
n(x)tn −

∑

n

P ′
n−1(x)t

n =
∑

n

nPn(x)tn

Equating coefficient of tn, we have

xP ′
n(x) − P ′

n−1(x) = nPn(x)

4. P′
n+1

(x) − xP′
n
(x) = (n + 1)Pn(x)

Proof: We know that

P ′n+ 1(x) − P ′n− 1(x) = (2n+ 1)Pn(x) (3.35)

xP ′
n(x) − P ′

n−1(x) = nPn(x) (3.36)

P ′n+ 1(x) − xP ′
n(x) = P ′

n+1(x) − P ′
n−1(x) − nPn(x), using (3.36)

= (2n+ 1)Pn(x) − nPn(x), using (3.35)

= (n+ 1)Pn(x)

Hence P ′
n+1(x) − xP ′

n(x) = (n+ 1)Pn(x)

Orthogonal property:
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This is the most important property of Legendre polynomial.

1
∫

−1

Pm(x)Pn(x)dx =







0 if m 6= n
2

2n+ 1
if m = n

(3.37)

Proof:

Let f(x) be any function with atleast n continuous derivatives on the interval

−1 ≤ x ≤ 1. Consider the integral

I =
1
∫

−1

f(x)Pn(x)dx

We know that Pn(x) =
1

2nn !

dn

dxn
(x2 − 1)n

I =

1
∫

−1

f(x)
1

2nn !

dn

dxn
(x2 − 1)ndx

=
1

2nn !

1
∫

−1

f(x)
dn

dxn
(x2 − 1)ndx

Applying integration by parts (i.e.,
∫

udv = uv −
∫

vdu), by taking

u = f(x), dv =
dn

dxn
(x2 − 1)n we have

I =
1

2nn !

[

f(x)
dn−1

dxn−1
(x2 − 1)n

]1

−1

− 1

2nn !

1
∫

−1

f ′(x)
dn−1

dxn−1
(x2 − 1)ndx

That is I =
−1

2nn !

1
∫

−1

f ′(x)
dn−1

dxn−1
(x2 − 1)ndx, since the first term is zero after

applying the limit.

By continuing the integration by parts n times, we obtain

I =
(−1)n

2nn !

1
∫

−1

f (n)(x) (x2 − 1)ndx

If f(x) = Pm(x) with m < n, then f (n)(x) = 0 and so I = 0 which proves the first
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part of (3.37). Now put f(x) = Pn(x).

I =

1
∫

−1

f(x)Pn(x)dx

=

1
∫

−1

1

2nn !

dn

dxn
(x2 − 1)n 1

2nn !

dn

dxn
(x2 − 1)n dx

Applying integration by parts by taking u =
dn

dxn
(x2 − 1)n and dv =

dn

dxn
(x2 − 1)n,

we have

I =
−1

(2nn !)2

1
∫

−1

dn−1

dxn−1
(x2 − 1)n dn+1

dxn+1
(x2 − 1)n dx.

By continuing the integration by parts n times, we obtain

I =
(−1)n

(2nn !)2

1
∫

−1

(x2 − 1)n d2n

dx2n
(x2 − 1)n dx.

=
(−1)n(2n)!

(2nn !)2

1
∫

−1

(x2 − 1)ndx, since
d2n

dx2n
(x2 − 1)n = (2n)!

=
(2n)!

(2nn !)2

1
∫

−1

(1 − x2)ndx =
2(2n)!

(2nn !)2

1
∫

0

(1 − x2)ndx

By change of variable, x = sin θ we have dx = cos θ dθ.
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Also the limit when x = 1, θ = 0; x = 1, θ = π
2
. Then

I =
2(2n)!

(2nn !)2

1
∫

0

(1 − x2)ndx

=
2(2n)!

(2nn !)2

π/2
∫

0

(1 − sin2 x)n cos θ dθ

=
2(2n)!

(2nn !)2

π/2
∫

0

cos2n θ cos θ dθ

=
2(2n)!

(2nn !)2

π/2
∫

0

cos2n+1 θ dθ

=
2(2n)!

(2nn !)2

(2n)(2n− 2) · · · 4.2
(2n+ 1)(2n− 1) · · · 5.3 ,

Using the result

π/2
∫

0

cos2n θ dθ =
(2n− 1)(2n− 3) · · · 3.1

(2n)(2n− 2) · · · 4.2

=
2(2n)!

22n(n !)2

(2n(n)(n− 1) · · · 2.1)((2n)(2n− 2) · · · 4.2)

(2n+ 1)(2n)(2n− 1) · · · 5.4.3.2.1

=
2(2n)!

22n(n !)2

(2n(n)(n− 1) · · · 2.1)(2n(n)(n− 1) · · · 2.1)

(2n+ 1)!

=
2(2n)!

22n(n !)2

(2nn!)(2nn!)

(2n+ 1)!

I =
2

2n+ 1

Hence the proof.
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Chapter 4

Linear equations with regular

singular points

4.1 Introduction

We consider the linear equation with variable coefficients

a0(x)y
(n) + a1(x)y

(n−1) + · · · + an(x)y = 0. (4.1)

We shall assume that the coefficients a0, a1, · · · , an are analytic at some point x0

and we shall be interested in an important case when a0(x0) = 0. A point x0 such

that a0(x0) = 0 is called a singular point of the equation (4.1).

We say that x0 is a regular singular point for (4.1) if the equation can be written

in the form

(x− x0)
ny(n) + b1(x)(x− x0)

n−1y(n−1) + · · · + bn(x)y = 0 (4.2)

near x0 where the functions b1, · · · , bn are analytic at x0. If the function b1, · · · , bn
can be written in the form

bn(x) = (x− x0)
kβk(x), (k = 1, 2, · · · , n),

where β1, β2, · · · , βn are analytic at x0, we see that (4.2) becomes

y(n) + β1(x)y
(n−1) + · · · + βn(x)y = 0 (4.3)
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upon dividing out (x − x0)
n. Thus (4.2) is a generalization of the equation with

analytic coefficients. An equation of the form

c0(x)(x− x0)
ny(n) + c1(x)(x− x0)

n−1y(n−1) + · · · + cn(x)y = 0

has a regular singular point at x0 if c0, c1, · · · , cn are analytic at x0, and c0(x0) 6= 0.

This is because we may divide by c0(x), for x near x0, to obtain an equation of the

form (4.2) with bk(x) = ck(x)/c0(x), and it can be shown that these bk are analytic

at x0.

We first consider the simplest case of an equation, not of the type (4.3), having

a regular singular point. This is the Euler equation, which is the case of (4.2) with

b1, · · · , bn all constants. Next we investigate the general equation of the second order

with a regular singular point, and indicate how solutions may be obtained near the

singular point. For x > x0 such solutions φ turn out to be of the form

φ(x) = (x− x0)
rσ(x) + (x− x0)

sρ(x) log(x− x0),

where r, s are constants and σ, ρ are analytic at x0.

Consider the equation

x2y′′ − y′ − 3

4
y = 0 (4.4)

. The origin x0 = 0 is a singular point, but not a regular singular point since the

coefficient −1 of y′ is not of the form xb1(x), where b1 is analytic at 0. We may solve

this equation by a series
∞
∑

k=0

ckx
k, (4.5)

where the coefficients ck satisfy the recursion formula

(k + 1) ck+1 =

(

k2 − k − 3

4

)

ck, (k = 0, 1, 2, · · · ) (4.6)

If c0 6= 0, the ratio test applied to (4.5),(4.6), shows that

∣

∣

∣

∣

ck+1x
k+1

ckxk

∣

∣

∣

∣

=

∣

∣

∣

∣

k2 − k − 3
4

k + 1

∣

∣

∣

∣

|x| → ∞, as k → ∞,

provided |x| 6= 0. Thus the series (4.5) will only converge for x = 0.
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4.2 The Euler equation

The simplest example of a second order equation having a regular singular point at

the origin is the Euler equation.

Theorem 4.1. Consider ther second order Euler equation

L(y) = x2y′′ + axy′ + by = 0,

where a, b are constants, and the polynomial q given by

q(r) = r(r − 1) + ar + b

.

A basis for the solutions of the Euler equation on any interval not containing x = 0

is given by

φ1(x) = |x|r1 , φ2(x) = |x|r2 ,

in case r1, r2 are distinct roots of q and by

φ1(x) = |x|r1 , φ2(x) = |x|r1 log |x|,

if r1 is a root of multiplicity two.

Proof. Consider the equation

L(y) = x2y′′ + axy′ + by = 0, (4.7)

where a, b are constants. We first consider this equation for x > 0, and observe that

the coeficient of y(k) in L(y) is a constant times xk. If r is any constant, xr has the

property that its k−th derivative times xk is a constant times xr. For example

x(xr)′ = rxr, x2(xr)′′ = r(r − 1)xr.

This suggests trying for a solution of L(y) = 0 a power of z. We find that

L(xr) = [r(r − 1) + ar + b]xr.

If q is the polynomial defined by

q(r) = r(r − 1) + ar + b,
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we may write

L(xr) = x2(xr)′′ + ax(xr)′ + b(xr)

= r(r − 1)xr + arxr + bxr

= (r(r − 1) + ar + b)xr

L(xr) = q(r)xr (4.8)

and it is clear that if r1 is a root of q(r) then q(r1) = 0. Therefore

L(xr
1) = q(r1)x

r = 0.

Thus the functionφ1 given by φ1(x) = xr1 is a solution of (4.7) for x > 0.

Case 1: If r2 is the other root of q, and r2 6= r1 , then we obtain another solution

φ2 given by φ2(x) = xr2 .

claim: φ1 and φ2 are linearly independent in the case r1 6= r2.

Suppose c1, c2 are constants such that

c1x
r1 + c2x

r2 = 0, (x > 0)

,

then

c1 + c2x
r2−r1 = 0, (x > 0). (4.9)

Differentiating we see that c2(r2 − r1)c
r2−r1−1 = 0, which implies c2 = 0, since

r2 − r1 6= 0 and x 6= 0. From (4.9) we obtain c1 = 0 also. Hence φ1, φ2 are linearly

independent.

Case 2: The roots r1, r2 of q are equal then q(r1) = 0, q′(r1) = 0, and this suggests

differentiating (4.8) with respect to r. Indeed

∂

∂r
L(xr) = L

(

∂

∂r
xr

)

= L

(

∂

∂r
elog xr

)

= L

(

∂

∂r
er log x

)

= L
(

er log x log x
)

= L(xr log x)
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L(xr log x) = x2(xr log x)′′ + ax(xr log x)′ + b(xr log x) = [q(r) log x+ q′(r)]xr

Since r1 is a equal root of q, q(r1) = 0 and q′(r1) = 0. Then L(xr1 log x) = 0.

Therefore φ2(x) = xr1 log x is a second solutions of (4.7) in this case.

claim: φ1 and φ2 are linearly independent in the case r1 = r2.

Suppose c1, c2 are constants such that c1φ1 + c2φ2 = 0. That is

c1x
r1 + c2x

r2 log x = 0, (x > 0)

,

then

c1 + c2 log x = 0, (x > 0). (4.10)

Differentiating we obtain c2
x

= 0 for (x > 0), which implies c2 = 0, since r2 − r1 6= 0

and x 6= 0. From (4.10) we obtain c1 = 0 also. Hence φ1, φ2 are linearly independent.

In either case the solutions φ1 and φ2 are linearly independent for x > 0.

We define xr for r complex by xr = er log x, (x > 0).

Then we have (xr)′ = (er log x)′ = er log x(r log x)′ =
r

x
er log x =

r

x
xr = rxr−1,

and
∂

∂r
(xr) =

∂

∂r
(er log x) = log x(er log x) = xr log x,

which are the formulas we used in the calculations. Solutions for (4.7) can be

found for x < 0 also. In this case consider (−x)r, where r is a constant. Then we

have for x < 0,

[(−x)r]′ = −r(−x)r−1, [(−x)r]′′ = r(r − 1)(−x)r−2,

and hence x [(−x)r]′ = −r(−x)r, x2 [(−x)r]′′ = r(r − 1)(−x)r.

Thus L((−x)r) = q(r)(−x)r, (x < 0).

Also
∂

∂r
[(−x)r] = (−x)r log(−x), (x < 0).

Therefore we see that if the roots r1, r2 of q are distinct, then two independent

solutions φ1, φ2 of (4.7) for x < 0 are given by

φ1(x) = (−x)r1 , φ2(x) = (−x)r2 , (x < 0)

and if r1 = r2, then two solutions are given by

φ1(x) = (−x)r1 , φ2(x) = (−x)r1 log(−x), (x < 0)

These are just the formulas for the solutions obtained for x > 0, with x replaced

by −x everywhere. Since |x| = x for x > 0, and |x| = −x for x < 0, we can write
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the solutions for any x 6= 0 in the following way:

φ1(x) = |x|r1 , φ2(x) = |x|r2 , (x 6= 0),

in case r1 6= r2 and

φ1(x) = |x|r1 , φ2(x) = |x|r1 log |x|, (x 6= 0),

in case r1 = r2.

Example 4.2. Consider the equation x2y′′ + xy′ + y = 0 for x 6= 0.

The polynomial q is given by

q(r) = r(r − 1) + r + 1 = r2 + 1

and its roots are r1 = i and r2 = −i. Thus a basis for the solutions is given by

φ1(x) = |x|i, φ2(x) = |x|−i, (x 6= 0),

where |x|i = ei log |x|. Note that in this case another basis ψ1, ψ2 is given by

ψ1(x) = cos(log |x|), ψ2(x) = sin(log |x|), (x 6= 0).

Remark 4.3. The above theorem can be extended to nth order equation

L(y) = xny(n) + a1x
n−1y(n−1) + · · · + any = 0 (4.11)

where a1, a2, · · · , an are constants. Then for any constant r we have L(|x|r) =

q(r)|x|r where q(r) = r(r − 1) · · · (r − n+ 1) + a1r(r − 1) · · · (r − n+ 2) + · · · + an.

This polynomial is called the indicial polynomial for the Euler equation (4.11). If

r1 is a root of q of multiplicity m, then q(r1) = 0, q′(r1) = 0, · · · , q(m1−1)(r1) = 0,

and we see that

|x|r1 , |x|r1 log |x|, · · · , |x|r1 logm1−1 |x|

are solutions of L(y) = 0. Repeating this process for each root of q we obtain the

following result.

Theorem 4.4. Let r1, r2, · · · , rs be the distinct roots of the indicial polynomial q

for L(y) = xny(n) + a1x
n−1y(n−1) + · · ·+ any = 0 and suppose ri has multiplicity mi.

Then the n functions

|x|r1 , |x|r1 log |x|, · · · , |x|r1 logm1−1 |x|;
|x|r2 , |x|r2 log |x|, · · · , |x|r2 logm2−1 |x|;

...

|x|rs , |x|rs log |x|, · · · , |x|rs logms−1 |x|

form a basis for the solutions of the n−th order Euler equation on any interval not
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containing x = 0.

Exercise:

1. Find all solutions of the following equations for x > 0:

(a) x2y′′ + 2xy′ − 6y = 0 (b) 2x2y′′ + xy′ − y = 0

(c) x2y′′ + xy′ − 4y = x (d) x2y′′ − 5xy′ + 9y = x3

4.3 Second order equations with regular singular

points-an example

A second order equation with a regular singular point at x0 has the form

(x− x0)
2y′′ + a(x)(x− x0)y

′ + b(x)y = 0, (4.12)

where a, b are analytic at x0. Thus a, b have power series expansions

a(x) =
∞
∑

k=0

αk(x− x0)
k, b(x) =

∞
∑

k=0

βk(x− x0)
k,

which are convergent on some interval |x−x0| < r0, for some r0 > 0. We shall be

interested in finding solutions of (4.12) near x0. In order to simplify our notation

we shall assume x0 = 0.

If it is easy to change (4.12) into an equivalent equation with a regular singular

point at the origin. We let t = x− x0, and

a(t) = a(x0 + t) = αkt
k, b(t) = b(x0 + t) = βkt

k.

The power series for a, b converge on the interval |t| < r0 about t = 0. Let φ be

any solution of (4.12), and define φ by

φ(t) = φ(x0 + t).

Then
dφ

dt
(t) =

dφ

dx
(x0 + t),

d2φ

dt2
(t) =

d2φ

dx2
(x0 + t),

and we see that φ satisfies

t2u′′ + a(t)tu′ + b(t)u = 0, (4.13)

Where now u′ = du/dt. This is an equation with a regular singular point at t = 0.

Conversely, if φ satisfies (4.13) the function φ given by
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φ(x) = φ(x− x0)

satisfies (4.12). In this sense (4.13) is equivalent to (4.12). With x0 = 0 in (4.12)

we may write (4.12) as

L(y) = x2y′′ = a(x)xy′ + b(x)y = 0 (4.14)

Where a, b are analytic at the origin, and have power series expansions

a(x) =
∞
∑

k=0

αkx
k, b(x) =

∞
∑

k=0

βkx
k, (4.15)

which are convergent on an interval |x| < r0, r0 > 0. The Euler equation is the

special ease of (4.14) with a, b constant. The effect of the higher order terms (terms

with x as a factor) in the series (4.15) is to introduce series into the solutions of

(4.14). We illustrate by an example.

Example 4.5. Consider the equation

L(y) = x2y′′ +
3

2
xy′ + xy = 0 (4.16)

which has a regular singular point at the origin. Let us restrict our attention to

x > 0. Since it is not an Euler equation we can not expect it to have a solution of

the form xr there. However we try for a solution.

φ(x) = xr

∞
∑

k=0

ckx
k = c0x

r + c1x
r+1 + · · · , (c0 6= 0), (4.17)

We find that φ′(x) = c0rx
r−1 + c1(r + 1)xr + c2(r + 2)xr+1 + · · · ,

φ′′(x) = c0r(r − 1)xr−2 + c1r(r + 1)xr−1 + c2(r + 2)(r + 1)xr + · · · ,

and hence

x2φ′′(x) = c0r(r − 1)xr + c1r(r + 1)xr+1 + c2(r + 2)(r + 1)xr+2 + · · · ,

3
2
xφ′(x) = 3

2
c0rx

r + 3
2
c1(r + 1)xr+1 + 3

2
c2(r + 2)xr+2 + · · · ,
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xφ(x) = c0x
r+1 + c1x

r+2 + c2x
r+3 + · · · ,

Then

L(φ)(x) = x2φ′′(x) +
3

2
xφ′(x) + xφ(x)

=

[

r(r − 1) +
3

2
r

]

c0x
r +

{[

r(r + 1) +
3

2
(r + 1)

]

c1 + c0

}

xr+1

+

{[

(r + 2)(r + 1) +
3

2
(r + 2)

]

c2 + c1

}

xr+2 + · · · .

If we let q(r) = r(r − 1) + 3
2
r = r(r + 1

2
),

This may be written as

L(φ)(x) = q(r)c0x
r + {q(r + 1)c1 + c0}xr+1 + {q(r + 2)c2 + c1}xr+2 + · · · .

= q(r)c0x
r + xr

∞
∑

k=1

[q(r + k)ck + ck−1]x
k.

If φ is to satisfy L(φ)(x) = 0 all coefficients of the powers of x must vanish. Since

we assumed c0 6= 0 this implies

q(r) = 0, q(r + k)ck + ck−1 = 0, (k = 1, 2, · · · ). (4.18)

The polynominl q is called the indicial polynomial for (4.16). It is the coefficient of

the lowest power of x appearing in L(φ)(x), and from (4.18) we see that its roots

are the only permissible values of r for which there are solutions of the form (4.17).

Here the roots are r1 = 0, r2 = −1
2

.

The second set of equations in (4.18) delimits c1, c2, · · · in terms of c0 and r. If

q(r = k) 6= 0 for k = 1, 2, · · · , then

ck =
−ck−1

q(r + k)
, (k = 1, 2, · · · ).

Then

k = 1, c1 =
−c0

q(r + 1)

k = 2, c2 =
−c1

q(r + 2)
=

c0
q(r + 1)q(r + 2)

k = 3, c3 =
−c2

q(r + 3)
=

−c0
q(r + 1)q(r + 2)q(r + 3)
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k = n, cn =
(−)ncn−1

q(r + n)
=

(−)nc0
q(r + 1)q(r + 2) · · · q(r + n)

In general, for k we have ck =
(−)kc0

q(r + 1)q(r + 2) · · · q(r + k)
(k = 1, 2, · · · )

If r1 = 0, then q(r1 + k) = q(k) 6= 0 for k = 1, 2, · · · .

If r2 = −1
2

, then q(r2 + k) = q(−1
2

+ k) 6= 0 for k = 1, 2, · · · .

Now φ(x) = xr
∞
∑

k=0

ckx
k = c0x

r+
∞
∑

k=1

ckx
r+k = c0x

r+
∞
∑

k=1

(−)kc0
q(r + 1)q(r + 2) · · · q(r + k)

xr+k

Letting c0 = 1 and r = r1 = 0 we obtain, a solution φ1 given by

φ1(x) = 1 +
∞
∑

k=1

(−)kxk

q(1)q(2) · · · q(k)
Letting c0 = 1 and r = r2 = −1

2
we obtain, a solution φ2 given by

φ2(x) = x−1/2 + x−1/2
∞
∑

k=1

(−)kxk

q(k − 1
2
)q(k − 3

2
) · · · q(1

2
)

These functions φ1, φ2 will be solutions provided the series converge on some

interval containing x = 0. Let us write the series for φ1 in the form

φ1(x) =
∞
∑

k=0

dk(x).

Using the ratio test we obtain

∣

∣

∣

∣

dk+1(x)

dk(x)

∣

∣

∣

∣

=
|x|

|q(k + 1)| =
|x|

(k + 1)(k + 1
2
)
→ 0 as k → ∞

provided |x| → ∞. Thus the series defining φ1 is convergent for all finite x. The

same can be shown to hold for the series multiplying x−1/2 in the expression for φ2.

Thus φ1, φ2 are solutions of (4.16) for all x > 0.

To obtain solutions for x < 0 we note that all the above computations go through

if xr is replaced everywhere by |x|r, where

|x|r = er log |x|. (4.19)

Thus two solutions of (4.16) which are valid for all x 6= 0 are given by

φ1(x) = 1 +
∞
∑

k=1

(−)kxk

q(1)q(2) · · · q(k)
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and φ2(x) = x−1/2

[

1 +
∞
∑

k=1

(−)kxk

q(k − 1
2
)q(k − 3

2
) · · · q(1

2
)

]

.

Note that the definition (4.19) implies that |x|1/2 is the positive square root of |x|.
It is clear that φ1, φ2 are linearly independent on any interval not containing x = 0.

For, let x0 = 0. Then φ1(x0) = 1, φ2(x0) = 0 and φ′
1(x0) = 0, φ′

2(x0) = 1.

Therefore W (φ1, φ2) = 1 6= 0 and so φ,φ2 are linearly independent.

Exercise:

1. Find the singular points of the following equations, and determine those which

are regular singular points:

(a) x2y′′ + (x+ x2)y′ − y = 0 (b) 3x2y′′ − 5y′ + 3x2y = 0

(c) (1 − x2)y′′ − 2xy′ + 2y = 0 (d) xy′′ + 4y = 0

2. Compute the indicial polynomials and their roots for the following equations:

(a) x2y′′ + (x+ x2)y′ − y = 0 (b) x2y′′ + xy′ + (x2 − 1
4
)y = 0

4.4 Second order equations with regular singular

points - the general case

Theorem 4.6. Consider the equation

x2y′′ + a(x)xy′ + b(x)y = 0,

where a, b have convergent power series expansions for |x| < r0, r0 > 0. Let r −
1, r2 (Rer1 ≥ Rer2) be the root of the roots of the indicial polynomial

q(r) = r(r − 1) + a(0)r + b(0).

For 0 < |x| < r0 there is a solution φ1 of the form

φ1(x) = |x|r1

∞
∑

k=0

ckx
k (c0 = 1),

where the series converges for |x| < r0. If r1 − r2 is not zero, or a positive integer

then there is a second solution φ2 for 0 < |x| < r0 of the form

φ2(x) = |x|r2

∞
∑

k=0

ckx
k (c0 = 1),

where the series converges for |x| < r0.

The coefficients ck, ck, can be obtained by substitution of the solutions into the
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diferential equation.

Proof. Consider the equation

x2y′′ + a(x)xy′ + b(x)y = 0, (4.20)

Suppose we have a solution φ if the form

φ(x) = xr

∞
∑

k=0

ckx
k (c0 6= 0, ) (4.21)

for the equation (4.20) where

a(x) =
∞
∑

k=0

αkx
k, b(x) =

∞
∑

k=0

βkx
k (4.22)

for |x| < r0. Then

φ′(x) =
∞
∑

k=0

(k + r)ckx
k+r−1 = xr−1

∞
∑

k=0

(k + r)ckx
k

φ′′(x) =
∞
∑

k=0

(k + r)(k + r − 1)ckx
k+r−2

= xr−2

∞
∑

k=0

(k + r)(k + r − 1)ckx
k

b(x)φ(x) =

( ∞
∑

k=0

βkx
k

)

xr

( ∞
∑

k=0

αkx
k

)

= xr

∞
∑

k=0

βkx
k,

where βk =
k
∑

j=0

cjβk−j

xa(x)φ′(x) = x

( ∞
∑

k=0

αkx
k

)

xr

( ∞
∑

k=0

(k + r)ckx
k

)

= xr

∞
∑

k=0

αkx
k,

where αk =
k
∑

j=0

(j + r)cjαk−j

x2φ′′(x) = xr

∞
∑

k=0

(k + r)(k + r − 1)ckx
k.
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Then L(φ)(x) = xr
∞
∑

k=0

[

(k + r)(k + r − 1)ck + αk + βk

]

xr,

and we must have
[

(k + r)(k + r − 1)ck + αk + βk

]

= 0, k = 0, 1, 2, · · · .

Then using the definition of αk, βk, we can write

(k + r)(k + r − 1)ck +
k
∑

j=0

(j + r)cjαk−j +
k
∑

j=0

cjβk−j = 0

[(k + r)(k + r − 1) + (k + r)α0 + β0] ck +
k−1
∑

j=0

[(j + r)αk−j + βk−j] cj = 0.

Then for k = 0 we must have

r(r − 1) + rα0 + β0 = 0, (4.23)

since c0 6= 0. The second degree polynomial q given be

q(r) = r(r − 1) + rα0 + β0

is called the indicial polynomial for (4.20), and the only admissible values of r are

the roots of q. We see that

q(k + r)ck + dk = 0 (4.24)

where

dk =
k−1
∑

j=0

(j + r)cjαk−j +
k−1
∑

j=0

cjβk−j, k = 1, 2, · · · . (4.25)

Note that dk is a linear combination of c0, c1, · · · , ck−1 with coefficients involving

the known functions a, b, and r. Leaving r and c0 indeterminant for the moment we

solve the equations (4.24), (4.25) successively in terms of c0 and r. The solutions

we denote by Ck(r), and the corresponding dk by Dk(r). Thus

D1(r) = (rα1 + β1)c0, C1(r) =
−D1(r)

q(r + 1)
,

and in general

Dk(r) =
k−1
∑

j=0

[(j + r)αk−j + βk−j]Cj(r), (4.26)

Ck(r) =
−Dk(r)

q(r + k)
, (k = 1, 2, · · · ). (4.27)

The Ck thus determined are rational functions of r (quotients of polynomials), and
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the only points where they cease to exist are the points r for which q(r+ k) = 0 for

some k = 1, 2, · · · . Only two such possible points exist. Let us define Φ by

Φ(x, r) = c0x
r + xr

∞
∑

k=1

Ck(r)x
k. (4.28)

If the series in (4.28) converges for 0 < x < r0, then clearly

L(Φ)(x, r) = c0q(r)x
r. (4.29)

We have now arrived at the following situation. If the φ given by (4.21) is a solution

of (4.20) then r must be a root of the indicial polynomial q, and the ck (k ≥ 1)

are determined uniquely in terms of r and c0 to be the Ck(r) of (4.27), provided

q(r + k) 6= 0, k = 1, 2, · · · . Conversely, if r is a root of q and if the Ck(r) can

be determined (that is, q(r + k) 6= 0 for k = 1, 2, · · · ) then the function φ given

by φ(x) = Φ(x, r) is a solution of (4.20) for any choice of c0, provided the series in

(4.28) can be shown to be convergent. 1(z) = z1 Let r1, r2 be the two roots of q,

and suppose we have labeled them so that Rer1 ≥ Rer2. Then q(r1 + k) 6= 0 for any

k = 1, 2, · · · . Thus Ck(r1) exists for all k = 1, 2, · · · , and letting c0 = C0(r1) = 1 we

see that the function φ1 given by

φ1(x) = xr1

∞
∑

k=0

Ck(r1)x
k, (C0(r1) = 1),

is a solution of (4.20), provided the series is convergent.

If r1 is a root of q distinct from r1, and q(r2 +k) 6= 0 for k = 1, 2, · · · , then clearly

Ck(r2) is defined for k = 1, 2, · · · , and the function φ2 given by

φ2(x) = xr2

∞
∑

k=0

Ck(r2)x
k, (C0(r2) = 1),

is another solution of (4.20), provided the series is convergent. The condition

q(r + k) 6= 0 for k = 1, 2, · · ·

is the same as r1 6= r2 + k for k = 1, 2, · · · , or r1 − r2 is not a positive integer.

Noting that since α0 = a(0), β0 = b(0), the indicial polynomial q can be written

as q(r) = r(r − 1) + a(0)r + b(0).
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4.5 The exceptional cases

We divide the exceptional cases into two groups according as the roots r1, r2(Rer1 ≥
Rer2) of the indicial polynomial satisfy

(i)r1 = r2 (ii)r1 − r2 is a positive integer.

We try to find solutions for 0 < x < r0. For such x we have from (4.28), (4.29)

Φ(x, r) = c0x
r + xr

∞
∑

k=1

Ck(r)x
k. (4.30)

where Φ is given by

L(Φ)(x, r) = c0q(r)x
r. (4.31)

The Ck(r) are determined recursively by the formulas

C0(r) = c0 6= 0

q(r + k)Ck(r) = −Dk(r), (4.32)

where Dk(r) =
k−1
∑

j=0

[(j + r)αk−j + βk−j]Cj(r), (k = 1, 2, · · · );

In case (i) we have q(r1) = 0, q′(r1) = 0, and this suggests formally differentiating

(4.29) with respect to r. We obtain

∂

∂r
L(Φ)(x, r) = L

(

∂Φ

∂r

)

(x, r) = c0 [q′(r) + (log x)q(r)]xr

and we see that if r = r1 = r2, c0 = 1, then

φ2(x) =
∂Φ

∂r
(x, r1)

will yield a solution of our equation, provided the series involved converge. Com-

puting formally from (4.28) we find

φ2(x) = xr1

∞
∑

k=0

C ′
k(r1)x

k + (log x)xr1

∞
∑

k=0

Ck(r1)x
k

= xr1

∞
∑

k=0

C ′
k(r1)x

k + (log x)φ1(x)

where φ1 is the solution already obtained:
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φ1(x) = xr1

∞
∑

k=0

Ck(r1)x
k, (C0(r1) = 1.

Note that C ′
k(r1) exists for all k = 0, 1, 2, · · · , since Ck is a rational function of r

whose denominator is not zero at r = r1. Also C0(r) = 1 implies that C ′
0(r1) = 0,

and thus the series multiplying xr1 in φ2 starts with the first power of x.

Let us now turn to the case (ii), and suppose that r1 = r2 +m, where m is a positive

integer. If c0 is given,

C1(r2), · · · , cm−1(r2)

all exists as finite numbers, but since

q(r +m)Cm(r) = −Dm(r), (4.33)

we run into trouble in trying to compute Cm(r1). Now q(r) = (r − r1)(r − r2), and

hence q(r +m) = (r − r2)(r +m− r2).

If Dm(r) also has r − r2, as a factor (i.e., Dm(r1) = 0) this would cancel the

same factor in q(r + m), and (4.33) would give Cm(r1) as a finite number. Then

cm+1(r2), cm+2(r2), · · · all exists. In this rather special situation we will have a

solution φ2 of the form

φ2(x) = xr2

∞
∑

k=0

Ck(r2)x
k, (C0(r2) = 1).

We can always arrange it so that Dm(r1) = 0 by choosing C0(r) = r − r2.

From (4.32) we see that Dk(r) is linear homogeneous in C0(r), · · · , Ck−1(r) and

hence Dk(r) has C0(r) = r − r2 as a factor. Thus Cm(r2) will exists as a finite

number. Letting

ψ(x, r) = xr

∞
∑

k=0

Ck(r)x
k, (C0(r) = r − r2), (4.34)

we find formally that

L(ψ)(x, r) = (r − r2)q(r)x
r (4.35)

Putting r = r2 we obtain formally a solution ψ given by ψ(x) = Ψ(x, r2).

However C0(r2) = C1(r2) = · · · = Cm−1(r2) = 0. Thus the series for ψ actually

starts with the m−th power of x, and hence ψ has the form

ψ(x) = xr2+mσ(x) = xr1σ(x),

where σ is some power series. It is not difficult to see that ψ is just a constant
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multiple of the solution φ1 already obtained. To get a solution really associated

with r2, we differentiate (4.35) with respect to r, obtaining

∂

∂r
L(Ψ)(x, r) = L

(

∂Ψ

∂r

)

(x, r)

= q(r)xr + (r − r2) [q′(r) + (log x)q(r)]xr.

Now letting r = r2 we find that the φ2 given by

φ2(x) =
∂Ψ

∂r
(x, r2)

is a solution, provided the series involved are convergent. It has the form

φ2(x) = xr
2

∞
∑

k=0

C ′
k(r2)x

k + (log x)xr
2

∞
∑

k=0

Ck(r2)x
k,

where Ck(r) = r − r2. Since C0(r2) = · · · = Cm−1(r2) = 0, we may write this as

φ2(x) = xr
2

∞
∑

k=0

C ′
k(r2)x

k + c(log x)φ1(x),

where c is some constant.

The method used in this section to obtain solutions is called the Frobenius method.

All the series obtained converge for |x| < r0. Similarly the solutions for x < 0 can

be obtained by replacing xr1 , xr2 , log x everywhere by |x|r1 , |x|r2 , log |x| respectively.

Theorem 4.7. Consider the equation

x2y′′ + a(x)xy′ + b(x)y = 0,

where a, b have convergent power series expansions for |x| < r0, r0 > 0. Let r −
1, r2 (Rer1 ≥ Rer2) be the root of the roots of the indicial polynomial

q(r) = r(r − 1) + a(0)r + b(0).

If r1 = r2 there are two linearly independent solutions φ1, φ2 for 0 < |x| < r0 of the

form

φ1(x) = |x|r1σ1(x), φ2(x) = |x|r1+1σ2(x) + (log |x|)φ1(x),

where σ1, σ2 have power series expansions which are convergent for |x| < r0 and

σ1(0) 6= 0.

If r1 − r2 is a positive integer then there are two linearly independent solutions

φ1, φ2 for 0 < |x| < r0 of the form

φ1(x) = |x|r1σ1(x), φ2(x) = |x|r2σ2(x) + c(log |x|)φ1(x),

where σ1, σ2 have power series expansions which are convergent for |x| < r0 and
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σ1(0) 6= 0, σ2(0) 6= 0, and c is a constant. It may happens that c = 0.

Exercise:

1. Obtain two linearly independent solutions of the following equations which are

valid near x = 0:

(a) x2y′′ + 3xy′ + (1 + x)y = 0 (b) x2y′′ + 2x2y′ − 2y = 0

(c) 3x2y′′ + 5xy′ + 3xy = 0 (d) x2y′′ + xy′ + x2y = 0

4.6 The Bessel equation

If α is a constant, Re α ≥ 0, the Bessels equation of order α is the equation

x2y′′ + xy′ + (x2 − α2)y = 0.

This has the form

x2y′′ + a(x)xy′ + b(x)y = 0.

with a(x) = 1, b(x) = x2−α2. Since a, b s are analytic at x = 0, the Bessel equation

has the origin as a regular singular point. The indicial polynomial q is given by

q(r) = r(r − 1) + a(0)r + b(0) = r(r − 1) + r − α2 = r2 − α2.

whose two roots r1, r2 are

r1 = α, r2 = −α.

We shall construct solutions for x > 0.

Bessel equation of order zero

Let us consider the case α = 0 first. Since the roots are both equal to zero in this

case it follows from Theorem 4.7 that there are two solutions φ1, φ2 of the form

φ1(x) = σ1(x), φ2(x) = xσ2(x) + (log x)φ1(x),

where σ1, σ2 have power series expansions which converge for all finite x. Let us

compute σ1, σ2.

Now consider L(y) = x2y′′ + xy′ + x2y and suppose

σ1(x) =
∞
∑

k=0

ck x
k, (c0 6= 0)

.

We find
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σ′
1(x) =

∞
∑

k=1

k ck x
k−1

σ′′
1(x) =

∞
∑

k=2

k (k − 1) ck x
k−2

and hence

x2 σ′′
1(x) =

∞
∑

k=2

k (k − 1) ck x
k

x σ′
1(x) =

∞
∑

k=1

k ck x
k = c1 x+

∞
∑

k=2

k ck x
k

x2 σ1(x) =
∞
∑

k=0

ck x
k+2 =

∞
∑

k=2

ck−2 x
k

Thus L(σ1(x)) =
∞
∑

k=2

[(k (k − 1) + k) ck + ck−2] x
k + c1 x = 0.

Then we see that c1 = 0, and (k (k − 1) + k) ck + ck−2 = 0 for k = 2, 3, · · · .

Then ck =
−ck−2

k (k − 1) + k
=

−ck−2

k2
for k = 2, 3, · · · .

Let c0 = 1. Then for k = 2, 3, · · · we have

k = 2, c2 =
−c0
22

=
−1

22

k = 4, c4 =
−c2
22

=
1

22 42

k = 6, c6 =
−c4
22

=
−1

22 42 62

In general, c2m =
(−1)m

22 42 62 · · · (2m)2
for m = 1, 2, · · · .

Since c1 = 0, we have c3 = c5 = · · · = 0. Thus σ1(x) contains even powers of x and

we obtain

σ1(x) =
∞
∑

m=0

(−1)m x2m

22m (m!)2
,

where as usal 0! = 1, and 20 = 1. The function defined by this series is called the
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Bessel functionm of eero order of the first kind and is denoted by J0. Thus

J0(x) =
∞
∑

m=0

(−1)m x2m

22m (m!)2
=

∞
∑

m=0

(−1)m

(m!)2

(x

2

)2m

Note: (Ratio test) Suppose we have the series
∑

an. Define L = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

.

Then if L < 1 the series is absolutely convergent (and hence convergent).

It can be checked by the ratio test that this series converges for all finite x. We

now determine a second solution φ2 for the Bessel equation of order zero. Letting

φ1 = J0 this solution has the form

φ2(x) =
∞
∑

k=0

ck x
k + (log x) φ1(x), (c0 = 0).

We obtain

φ′
2(x) =

∞
∑

k=1

k ck x
k−1 +

φ1(x)

x
+ (log x) φ′

1(x),

φ′′
2(x) =

∞
∑

k=2

k (k − 1) ck x
k−2 − φ1(x)

x2
+

2

x
φ′

1(x) + (log x) φ′′
1(x).

Thus

L(φ2)(x) = x2φ′′
2(x) + xφ′

2(x) + x2φ2(x)

=
∞
∑

k=2

k (k − 1) ck x
k − φ1(x) + 2xφ′

1(x) + (log x)x2φ′′
1(x)

+
∞
∑

k=1

k ck x
k + φ1(x) + (log x)xφ′

1(x) +
∞
∑

k=0

ck x
k+2 + (log x)x2φ1(x)

=
∞
∑

k=2

k (k − 1) ck x
k + c1x+

∞
∑

k=2

k ck x
k +

∞
∑

k=2

ck−2 x
k

+2xφ′
1(x) + (log x)(x2φ′′

1(x) + xφ′
1(x) + x2φ1(x))

=
∞
∑

k=2

k (k − 1) ck x
k + c1x+

∞
∑

k=2

k ck x
k +

∞
∑

k=2

ck−2 x
k

+2xφ′
1(x) + (log x)L(φ1)(x)

=
∞
∑

k=2

[(k (k − 1) + k) ck + ck−2] x
k + c1x+ 2xφ′

1(x), since L(φ1)(x) = 0

Since L(φ2)(x) = 0, we have

c1x+
∞
∑

k=2

[k2 ck + ck−2] x
k = −2xφ′

1(x) = −2
∞
∑

m=1

(−1)m(2m)x2m

22m(m!)2
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Hence by equating coefficient of x we have c1 = 0. Since the series on the right

side has only the even powers of x, we have c3 = c5 = · · · = 0.

The recursion relation for the other coefficients is

(2m)2 c2m + c2m−2 =
(−1)m+1(m)x2m

22m−2(m!)2
, (m = 2, 3, · · · )

Then we have c2 =
1

22

c4 =
1

42

(

− 1

22
− 1

2 22

)

= − 1

22 42

(

1 +
1

2

)

c6 =
1

62

[

1

22 42

(

1 +
1

2

)

+
1

22 42

1

3

]

=
1

22 42 62

(

1 +
1

2
+

1

3

)

, · · · ,

and it can be shown by induction that

c2m =
(−1)m−1

22m(m!)2

(

1 +
1

2
+

1

3
+ · · · + 1

m

)

where m = 1, 2, · · · .

The solution thus determined is called a Bessel function of zero order of the second

kind, and is denoted by Kn. Hence

Kn(x) = −
∞
∑

m=1

(−1)m

(m!)2

(

1 +
1

2
+

1

3
+ · · · + 1

m

)(

x

2

2m
)

+ (log x)J0(x).

Using the ratio test it is easy to check that the series on the right is convergent

for all finite x.

Bessel equation of order α

Now we compute solutions for the Bessel equation of order α, where α 6= 0 and

Re α ≥ 0:

L(y) = x2y′′ + xy′ + (x2 − α2)y = 0.

Let x > 0. The roots of the indicial polynomial are r1 = α, r2 = −α.

First we determine a solution corresponding to the root r1 = α. The solution φ1

has the form

φ1(x) = xα
∞
∑

k=0

ck x
k, (c0 6= 0).

That is φ1(x) =
∞
∑

k=0

ck x
k+α.
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φ′
1(x) =

∞
∑

k=0

(α+ k) ck x
α+k−1

φ′′
1(x) =

∞
∑

k=0

(α+ k) (α+ k − 1) ck x
α+k−2

x2 φ′′
1(x) =

∞
∑

k=0

(α+ k) (α+ k − 1) ck x
α+k

x φ′
1(x) =

∞
∑

k=0

(α+ k) ck x
α+k

(x2 − α2)φ1(x) = x2φ1(x) − α2φ1(x)

=
∞
∑

k=0

ck x
α+k+2 − α2

∞
∑

k=0

ck x
α+k

=
∞
∑

k=2

ck−2 x
α+k − α2

∞
∑

k=0

ck x
α+k

Then

L(φ1)(x) =
∞
∑

k=0

[(α+ k)(α+ k − 1) + (α+ k)] ckx
α+k

+
∞
∑

k=2

ck−2 x
α+k − α2

∞
∑

k=0

ck x
α+k

=
∞
∑

k=0

[

(α+ k)2 − α2
]

ckx
α+k +

∞
∑

k=2

ck−2 x
α+k

= (α2 − α2)c0x
α + ((α+ 1)2 − α2)c1x

α+1

+
∞
∑

k=2

{[

(α+ k)2 − α2
]

ck + ck−2

}

xα+k

Since L(φ1)(x) = 0, c1 = 0 and [(α+ k)2 − α2] ck + ck−2 = 0 for k = 2, 3, · · · .

Therefore ck =
−ck−2

(α+ k)2 − α2
=

−ck−2

k(2α + k)
, since k(2α+ k) 6= 0 for k = 2, 3, · · · .

Since c1 = 0, c3 = c5 = · · · = 0. Then for k = 2, 3, · · · we have
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k = 2, c2 =
−c0

2(2α+ 2)
=

−c0
22(α+ 1)

k = 4, c4 =
−c2

4(2α+ 4)
=

c0
22(α+ 1)23(α+ 2)

=
c0

24 2!(α + 1)(α+ 2)

k = 6, c6 =
−c4

6(2α+ 6)
=

−c0
24 2!(α + 1)(α+ 2)12(α + 3)

=
c0

26 3!(α+ 1)(α+ 2)(α+ 3)

In general, we have c2m =
(−1)m c0

22m m! (α+ 1) · · · (α+m)
where m = 1, 2, · · · .

Thus our solutions becomes

φ1(x) = c0x
α + c0x

α

∞
∑

m=1

(−1)m x2m

22m m! (α+ 1) · · · (α+m)
(4.36)

For α = 0, c0 = 1, this reduces to J0(x).

It is usual to choose

c0 =
1

2α Γ(α+ 1)
(4.37)

where Γ is a gamma function defined by

Γ(z) =
∞
∫

0

e−xxz−1dx, (Re z > 0)

Then it is clear that Γ(z + 1) = zΓ(z). Indeed by applying integration by parts,

we have Gamma(z + 1) =
∞
∫

0

e−xxzdx. Taking u = xz, dv = e−xdx we have du =

zxz−1dz, v = −e−x.

Then

Γ(z + 1) =
[

−xze−x
]∞
0

+

∞
∫

0

e−xzxz−1dx

= 0 + z

∞
∫

0

e−xxz−1dx

= zΓ(z)

Also Γ(1) = 1. If z is a positive integer n, then Γ(n+ 1) = n!.
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Thus the gamma function is an extension of the factorial function to numbers

which are not integers.

SupposeN is a positive integer such that −N < Rez < −N+1. Then Re(z+N) >

0 and we can define Γ(z) in terms of Γ(z +N) by

Γ(z) =
Γ(z +N)

z(z + 1) · · · (z +N − 1)
, provided z 6= −N + 1

.

Now,

φ1(x) = c0x
α + c0x

α

∞
∑

m=1

(−1)m x2m

22m m! (α+ 1) · · · (α+m)

=
xα

2α Γ(α+ 1)
+
xα

2α

∞
∑

m=1

(−1)m x2m

22m m! (α+ 1) · · · (α+m)Γ(α+ 1)

Since from the definition of Γ(z) we have

Γ(z) =
Γ(z +N)

z(z + 1) · · · (z +N − 1)

Therefore we have

Γ(α+ 1) =
Γ(α+ 1 +N)

(α+ 1)(α+ 2) · · · (α+N)

Γ(α+ 1 +N) = (α+ 1)(α+ 2) · · · (α+N)Γ(α+ 1)

Hence

φ1(x) =
xα

2α Γ(α+ 1)
+
xα

2α

∞
∑

m=1

(−1)m x2m

22m m! (α+ 1) · · · (α+m)Γ(α+ 1)

=
xα

2α Γ(α+ 1)
+
xα

2α

∞
∑

m=1

(−1)m x2m

22m m! Γ(α+m+ 1)

=
xα

2α

∞
∑

m=0

(−1)m x2m

22m m! Γ(α+m+ 1)

This is denoted by Jα. That is

Jα(x) =
(x

2

)α
∞
∑

m=0

(−1)m

m! Γ(α+m+ 1)

(x

2

)2m

.
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Notice that this formula for Jα. reduces to J0 when α = 0, since Γ(m+ 1) = m!.

There are now two cases according as r1 − r2 = 2α is a positive integer or not.

Case 1: If r1 − r2 = 2α is not a positive integer, by Therem 4.6 there is another

solution φ2 of the form

φ2(x) = x−α
∞
∑

k=

ckx
k

We find that our calculations for the root r2 = −α is same as r1 = α provided

that we replace α by −α everywhere. Then

J−α(x) =
(x

2

)−α
∞
∑

m=0

(−1)m

m! Γ(m− α+ 1)

(x

2

)2m

gives a second solution in case 2α is not a positive integer.

Case 2: r1 − r2 = 2α is a positive integer if α is a positive integer say α = n. By

Theorem 4.7, there is another solution φ2 of the form

φ2(x) =
∞
∑

k=0

ckx
k−n + c(log x)Jn(x)

φ′
2(x) =

∞
∑

k=0

(k − n)ckx
k−n−1 + c(log x)J ′

n(x) + c
Jn(x)

x

φ′′
2(x) =

∞
∑

k=0

(k − n)(k − n− 1)ckx
k−n−2 + c(log x)J ′′

n(x)

+c
J ′

n(x)

x
+ c

J ′
n(x)

x
− c

Jn(x)

x2

x2φ′′
2(x) =

∞
∑

k=0

(k − n)(k − n− 1)ckx
k−n + c(log x)x2J ′′

n(x)

+cxJ ′
n(x) + cxJ ′

n(x) − cJn(x)

xφ′
2(x) =

∞
∑

k=0

(k − n)ckx
k−n + c(log x)xJ ′

n(x) + cJn(x)

(x2 − n2)φ2(x) =
∞
∑

k=0

ckx
k−n+2 − n2

∞
∑

k=0

ckx
k−n + c(log x)(x2 − n2)Jn(x)
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L(φ2)(x) = x2φ′′
2(x) + xφ′

2(x) + (x2 − n2)φ2(x)

=
∞
∑

k=0

[

(k − n)(k − n− 1) + (k − n) − n2
]

ckx
k−n + cx2J ′′

n(x)(log x)

+2cxJ ′
n(x) + cx(log x)J ′

n(x) +
∞
∑

k=0

ckx
k−n+2 + (x2 − n2)c(log x)Jn(x)

= (n2 − n2)c0x
−n +

[

(1 − n)2 − n2
]

c1x
1−n + 2cxJ ′

n(x)

+
∞
∑

k=2

[

((k − n)2 − n2)ck + ck−2

]

xk−n + c(log x)L(Jn(x))

= (0)c0x
−n +

[

(1 − n)2 − n2
]

c1x
1−n + 2cxJ ′

n(x)

+
∞
∑

k=2

[

((k − n)2 − n2)ck + ck−2

]

xk−n, since L(Jn(x)) = 0,

Since L(φ2)(x) = 0, we have on multiplying by xn

xn(0)c0x
−n + [(1 − n)2 − n2] c1x

1−nxn + 2cxn+1J ′
n(x)

+ xn
∞
∑

k=2

[((k − n)2 − n2)ck + ck−2] x
k−n = 0

(0)c0 + [(1 − n)2 − n2] c1x+
∞
∑

k=2

[((k − n)2 − n2)ck + ck−2] x
k = −2cxn+1J ′

n(x)

Since Jn(x) =
∞
∑

m=0

(−1)m

m! Γ(n+m+ 1)

(x

2

)2m+n

, we have

J ′
n(x) =

∞
∑

m=0

(−1)m(2m+ n)x2m+n−1

22m+nm! Γ(n+m+ 1)

Therefore

(0)c0 + (1 − 2n)c1x+
∞
∑

k=2

[k(k − 2n)ck + ck−2] x
k = −2c

∞
∑

m=0

(−1)m(2m+ 2n)x2m+n

22m+nm! Γ(n+m+ 1)

= −2c
∞
∑

m=0

(2m+ n) d2mx
2m+2n

(4.38)

where

d2m =
(−1)m

22m+nm!(m+ n)!
(4.39)

since Γ(n+m+ 1) = (n+m)!.
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The right hand side of above series (4.38) begins with x2n, and since n is a positive

integer we have c1 = 0. Further if n > 1,

k(k − 2n)ck + ck−2 = 0, (k = 2, 3, · · · , 2n− 1),

and this implies c3 = c5 = · · · = c2n−1 = 0, whereas

c2 =
c0

22(n− 1)
, c4 =

c2
24 2!(n− 1)(n− 2)

,

and in general

c2j =
c0

22j j!(n− 1)(n− 2) · · · (n− j)
, (j = 1, 2, · · · , n− 1)

Comparing the coefficient of x2n in (4.38) we obtain

c2n−2 = −2cnd0 =
c

2n−1(n− 1)!
.

On the other hand from (4.39) it follows that

c2n−1 =
c0

22n−1(n− 1)!(n− 1)!
,

and therefore

c =
c0

2n−1(n− 1)!
. (4.40)

Since the series on the right side of (4.38) contains only even powers of x the same

must be true of the series on the left side of (4.38), and this implies

c2n+1 = c2n+3 = · · · = 0.

The coefficient c2n is undetermined, but the remaining coefficients c2n+2, c2n+4, · · ·
are obtained from the equations

2m(2n+ 2m)c2n+2m + c2n+2m−1 = −2c(n+ 2m)d2m, (m = 1, 2, · · · )

For m = 1, we have

c2n+1 = −cd2

2

(

1 +
1

n+ 1

)

− c2n

4(n+ 1)

We now choose c2n so that
c2n

4(n+ 1)
=
cd2

2

(

1 +
1

2
+ · · · + 1

n

)

Since 4(n+ 1)d2 = −d0,

c2n = −cd0

2

(

1 +
1

2
+ · · · + 1

n

)

With the choice of c2n we have
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c2n+2 = −cd2

2

(

1 + 1 +
1

2
+ · · · + 1

n+ 1

)

For m = 2 we obtain

c2n+4 = −cd0

2

(

1

2
+

1

n+ 2

)

− c2n+2

2n 2 (n+ 2)

Since 2n 2 (n+ 2)d4 = −d2,
c2n+2

2n 2 (n+ 2)
=
cd4

2

(

1 + 1 +
1

2
+ · · · + 1

n+ 1

)

and therefore

c2n+4 = −cd4

2

(

1 +
1

2
+ 1 +

1

2
+ · · · + 1

n+ 2

)

It can be shown by induction that

c2n+2m = −cd2m

2

[(

1 +
1

2
+ · · · 1

m

)

+

(

1 +
1

2
+ · · · + 1

n+m

)]

, (m = 1, 2, · · · .)

Finally, we obtain for our solution φ2, the function given by

φ2(x) = c0x
−n + c0x

−n

∞
∑

j=1

x2j

22j j! (n− 1) · · · (n− j)
− cd0

2

(

1 +
1

2
+ · · · + 1

n

)

xn

− c
2

∞
∑

m=1

d2m

[(

1 +
1

2
+ · · · 1

m

)

+

(

1 +
1

2
+ · · · + 1

n+m

)]

xn+2m

+c(log x)Jn(x),

where c0 and c are constants related by (4.40), and d2m is given by (4.39). When

c = 1 the resulting function φ2 is often denoted by Kn. In this case

c0 = −2n−1(n− 1)!,

and therefore we may write

Kn(x) = −1

2

(x

2

)−n
n−1
∑

j=0

(n− j − 1)!

j!

(x

2

)2j

− 1

2

1

n!

(

1 +
1

2
+ · · · + 1

n

)

(x

2

)n

−1

2

(x

2

)n
∞
∑

m=1

(−1)m

m! (m+ n)!

[(

1 +
1

2
+ · · · + 1

m

)

+

(

1 +
1

2
+ · · · + 1

m+ n

)]

(x

2

)2m

+(log x)Jn(x)

This formula reduces to the one for K0(x) when n = 0, provided we interpret the

first two sums on the right as zero in this case. The function Kn is called a Bessel

funclion of order n of the second kind.
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Properties of Bessel function

1.
d

dx
J0(x) = −J1(x).

Proof: We know that

Jα(x) =
(x

2

)α
∞
∑

m=0

(−1)m

m! Γ(α+m+ 1)

(x

2

)2m

=
∞
∑

m=0

(−1)m

m! (α+m)!

(x

2

)2m+α

Then

J0(x) =
∞
∑

m=0

(−1)m

m! m!

(x

2

)2m

=
∞
∑

m=0

(−1)m x2m

m! m! 22m

J1(x) =
∞
∑

m=0

(−1)m

m! (m+ 1)!

(x

2

)2m+1

=
∞
∑

m=0

(−1)m x2m+1

m! (m+ 1)! 22m+1

Then

d

dx
(J0(x)) =

∞
∑

m=1

(−1)m (2m) x2m−1

m! m! 22m

=
∞
∑

m=0

(−1)m+1 (2(m+ 1)) x2(m+1)−1

(m+ 1)! (m+ 1)! 22(m+1)

=
∞
∑

m=0

(−1)m (−1) (2(m+ 1)) x2m+1

m!(m+ 1) (m+ 1)! 22m+2

= −
∞
∑

m=0

(−1)m x2m+1

(m)! (m+ 1)! 22m+1)

= −J1(x)

2. J−α(x) = (−1)α Jα(x).

Proof: We know that

Jα(x) =
∞
∑

m=0

(−1)m

m! (α+m)!

(x

2

)2m+α
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J−α(x) =
∞
∑

m=0

(−1)m

m! (m− α)!

(x

2

)2m−α

For m = 0, 1, 2, · · · , α− 1, (n− α)! is ±∞. Therefore

J−α(x) =
∞
∑

m=α

(−1)m

m! (m− α)!

(x

2

)2m−α

Put m− α = n,

J−α(x) =
∞
∑

n=0

(−1)n+α

(n+ α)! n!

(x

2

)2n−α

.

That is J−α(x) = (−1)α
∞
∑

n=0

(−1)n

(n+ α)! n!

(x

2

)2n−α

.

Hence J−α(x) = (−1)α Jα(x).
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Chapter 5

Existence and uniqueness of

solutions to first order equations

5.1 Introduction

Consider the general first order equation

y′ = f(x, y) (5.1)

when f is some continuous function. Now we consider one special case namely the

linear equation.

5.2 Linear equation

Consider the linear equation

y′ + g(x)y = h(x), (5.2)

where g, h are continuous on some interval I. Any solution φ if (5.2) can be written

in the form

φ(x) = e−Q(x)

x
∫

x0

eQ(t)h(t)dt+ ce−Q(x), (5.3)
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where Q(x) =
x
∫

x0

g(t)dt,

x0 is in I and c is a constant.

Example 5.1. Consider the linear equation

y′ + xy = e−x2/2

Here g(x) = x and h(x) = e−x2/2.Then

Q(x) =
∫

g(x)dx =
∫

xdx =
x2

2

Therefore

y = e−Q(x)

∫

eQ(x)h(x)dx+ ce−Q(x)

= e−x2/2

∫

(

ex2/2
)(

e−x2/2
)

dx+ ce−x2/2

= e−x2/2x+ ce−x2/2

y = e−x2/2(x+ c)

Example 5.2. Consider the linear equation

y′ − y cotx = 2x sin x

Here g(x) = − cotx and h(x) = 2x sin x.Then

Q(x) =
∫

g(x)dx = −
∫

cotxdx = − log(sinx)

Therefore

y = e−Q(x)

∫

eQ(x)h(x)dx+ ce−Q(x)

= elog(sin x)

∫

(− log(sinx)) (2x sin x) dx+ celog(sin x)

= sin x

∫ (

1

sin x

)

(2x sin x) dx+ c sin x

= (sinx)(x2) + c sin x

y = (sinx)(x2 + c)

If f is not a linear equation there are certain limitations which must be expected

concerning any general existence theorem. To illustrate this consider the equation

y′ = y2

Here f(x, y) = y2 and we see f has serivatives of all orders with respect to x and

113



y at every point in the (x, y)− plane. A solution φ of this equation satisfying the

initial condition φ(1) = −1 is given by φ(x) = −1

x
. However this solution ceases

to exist at x = 0 even though f is a nice function there. This example shows that

any general existence theorem for (5.1) can only assert the existence of a solution

on some interval near-by the initial point.

The above phenomenon does not occur in the case of the linear equation (5.2), for

it is clear from (5.3) that any solution φ exists on all of the interval I. This points

up one of the fundamental difficulties we encounter when we consider nonlinear

equations. The equation often gives no clue as to how far a solution will exist.

We prove that initial value problems for equation (5.1) have unique solutions which

can be obtained by an approximation process, provided f satisfies an additional

condition, the Lipschitz condition. We first concentrate our attention on the case

when f is real-valued, and later show how the results carry over to the situation

when f is complex-valued.

Exercise:

Find the solution for the following equation.

(a) (1 + x2)y′ + y = tan−1 x (b) y′ + y sec x = tanx

5.3 Equations with variables separated

A first order equation

y′ = f(x, y)

is said to have the variables separated if f can be written in the form

f(x, y)
g(x)

h(y)
,

where g, h are functions of a single argument. In this case we may write our equation

as

h(y)
dy

dx
= g(x) or h(y)dy = g(x)dx (5.4)

Let us discuss the equation (5.4) in the case g and h are continuous real-valued

functions defined for real x and y respectively. If φ is a real-valued solution of (5.4)

on some interval I containing a point x0 then

h(φ(x))φ′(x) = g(x)
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for all x in I and therefore

x
∫

x0

h(φ(t))φ′(t)dt =

x
∫

x0

g(t)dt (5.5)

for all x in I. Letting u = φ(t) in the integral on the left in (5.5), we see that (5.5)

may be written as
φ(x)
∫

φ(x0)

h(u)du =
x
∫

x0

g(t)dt

Conversely, suppose x and y are related by the formula

y
∫

y0

h(u)du =

x
∫

x0

g(t)dt (5.6)

and that this defines implicitly a differentiable function φ for x in I. Then this

function satisfies
φ(x)
∫

y0

h(u)du =
x
∫

x0

g(t)dt

for all x in I, and differentiating we obtain h(φ(x))φ′(x) = g(x), which shows that

φ is a solution of (5.4) on I.

The usual way of dealing with (5.4) is to write it as h(y)dy = g(x)dx (thus

seperating the variables) and then integrate to obtain
∫

h(y)dy =
∫

g(x)dx+ c,

where c is a constant and the integrals are anti-derivatives. Thus

H(y) =
∫

h(y)dy, G(x) =
∫

g(x)dx,

represent any two functions H,G such that H ′ = h and G′ = g. Then any

differentiable function φ which is defined implicitely by the relation

H(y) = G(x) + c (5.7)

will be the solution of (5.4). We summarize in the following theorem.

Theorem 5.3. Let g, h be continuous real-valued functions for a ≤ x ≤ b, c ≤ y ≤ d

respectively and consider the equation

h(y)y′ = g(x)

If G,H are any functions such that G′ = g and H ′ = h, and c is any constant
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such that the relation

H(y) = G(x) + c

defines a real-valued differentiable function φ, for x in some interval I contained

in a ≤ x ≤ b, then φ will be a solution of (5.4) on I. Conversely, if φ is a solution

of (5.4) on I, it satisfies the relation H(y) = G(x) + c on I for some constant c.

Remark 5.4. Consider the equation y′ =
g(x)

h(y)

Case 1: Let h(y) = 1. Then

y′ = g(x)

dy

dx
= g(x)

dy = g(x)dx

y =

∫

g(x)dx

Every solution φ has the form φ(x) = G(x) + c where G(x) =
∫

g(x)dx and c is a

constant.

Case 2: Let g(x) = 1. Then

y′ =
1

h(y)

dy

dx
=

1

h(y)

dx = h(y)dy

x+ c =

∫

h(y)dy

Every solution φ has the form H(y) = x + c where H(y) =
∫

h(y)dy and c is a

constant.

Example 5.5. Consider the equation y′ = y2. Here h(y) =
1

y2
, which is not

continuous at y = 0. We have

dy

y2
= dx

∫

dy

y2
=

∫

dx

116



−1

y
= x+ c

y =
−1

x+ c

This if c is any constant, the function φ is given by

φ(x) =
−1

x+ c

is a solution of the equation y′ = y2 provided x 6= c.

Remark 5.6. It is important to remark that the separation of variables method of

finding solutions may not yield all solutions of an equation.

For example, it is clear from the above example that the function ψ which is

identically zero for all x is a solution of the equation. However, for no constant c

will the φ yield this solution.

Example 5.7. Consider the equation y′ = 3y2/3.

Here h(y) =
1

3y2/3
, which is not continuous at y = 0. We have

dy

y2/3
= dx

∫

dy

y2/3
=

∫

dx

y1/3 = x+ c

y = (x+ c)3

This if c is any constant, the function φ is given by

φ(x) = (x+ c)3

is a solution of the equation y′ = y2/3 for any constant c

Exercise:

1. Find all real-valued solutions of the following equations:

(a) y′ = x2y (b) yy′ = x

(c) y′ =
x+ x2

y − y2
(d) y′ = x2y2 − 4x2
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Homogeneous equation

Definition 5.8. A function f defined for real x, y is said to be homogeneous of

degree k if

f(tx, ty) = tk f(x, y) for all t, x, y.

Note: If f is a homogeneous function of degree zero then we have f(tx, ty) = f(x, y).

Definition 5.9. The equation y′ = f(x, y) is homogeneous if f is a homogeneous

function of degree zero.

We consider a equation of the form

y′ = f(x, y) =
g(x, y)

h(x, y)

where g, h are homogeneous functions of same degree. This equation can be reduced

to ones with variables separated.

To see this, let y = vx in y′ = f(x, y). Then we obtain

y = vx⇒ dy

dx
= v + x

dv

dx
dy

dx
= f(x, y) ⇒ v + x

dv

dx
= f(x, vx) = f(1, v)

Hence v′ =
dv

dx
=
f(1, v) − v

x
which is an equation for v with variables separated.

Then we obtain final solution by replacing v by
y

x
.

Example 5.10. Consider the equation y′ =
x+ y

x− y

Let y = vx. Then
dy

dx
= v + x

dv

dx

v + x
dv

dx
=

x+ vx

x− vx

v + x
dv

dx
=

1 + v

1 − v

x
dv

dx
=

1 + v

1 − v
− v

x
dv

dx
=

1 + v2

1 − v
1 − v

1 + v2
dv =

dx

x
1

1 + v2
dv − 1

2

2v

1 + v2
dv =

dx

x
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On integration we have

tan−1 v − 1

2
log(1 + v2) = log x+ c

2 tan−1 v = log(1 + v2) + log x2 + c

2 tan−1
(y

x

)

= log

(

1 +
y2

x2

)

(x2) + c

2 tan−1
(y

x

)

= log
(

x2 + y2
)

+ c

Exercise:

1. Find all real-valued solutions of the following equations:

(a) y′ =
y2

xy + x2

(b) y′ =
x2 + xy + y2

x2

Non-homogeneous equation

Consider the equation of the form

y′ =
a1x+ b1y + c1
a2x+ b2y + c2

where a1, a2, b1, b2, c1, c2 are constants and c1, c2 6= 0 can be reduced to homogeneous

equation.

Case 1:

If a1b2 = a2b1 then the substitution a1x + b1y = v or a2x + b2y = v reduces the

given equation to one in which the variables are separated.

Case 2:

If a1b2 6= a2b1 then the substitution x = X + h and y = Y + k where h and k are

such that a1h+ b1k+ c1 = 0 and a2h+ b2k+ c2 = 0 reduces the given equation to a

homogeneous equation in X and Y . The final solution is got by replacing x and Y

by x− h and y − k respectively.

Example 5.11. Consider the equation
dy

dx
=
x− y + 1

x+ y − 3

Here a1 = 1, b1 = −1, c1 = 1, a2 = 1, b2 = 1, c2 = −3. Also a1b2 = 1 and

a2b1 = −1. Hence a1b2 6= a2b1.

Put x = X + h and y = Y + k. Then dx = dX and dy = dY .

119



Therefore
dy

dx
=
dY

dX
.

Then
dY

dX
=
X + h− Y − k + 1

X + h+ Y + k − 3

Choose h, k such that h−k+1 = 0 and h+k−3 = 0. Solving these two equations

we have h = 1 and k = 2.

Therefore
dY

dX
=
X − Y

X + Y
. This is a homogeneous equation in X and Y .

Put Y = vX. Then
dY

dX
= v + x

dv

dX
.

v +X
dv

dX
=

X − vX

X + vX

v +X
dv

dX
=

1 − v

1 + v

x
dv

dX
=

1 − v

1 + v
− v

x
dv

dX
=

1 − 2v − v2

1 + v
1 + v

1 − 2v − v2
dv =

dX

X

−1

2

−2(1 + v)

1 − 2v − v2
dv =

dX

X

On integration we have

−1

2
log(1 − 2v − v2) = log x+ log c1

(1 − 2v − v2)−1/2 = c1x
1

(1 − 2v − v2)1/2
= c1x

1

(1 − 2v − v2)
= c21x

2

(1 − 2v − v2)x2 =
1

c21
= c

(1 − 2
y

x
− y2

x2
)x2 = c

(x2 − 2xy − y2) = c

Also we have x = X + h = X + 1 and y = Y + k = Y + 2.

120



Then X = x− 1 and Y = y − 2.

Therefore (x− 1)2 − 2(x− 1)(y − 2) − (y − 2)2 = c

x2 + 1 − 2x− 2xy + 4x+ 2y − 4 − y2 − 4 + 4y = c

x2 − 2xy − y2 + 2x+ 6y = c+ 8 = c2.

Example 5.12. Consider the equation
dy

dx
=

6x− 4y + 3

3x− 2y + 1

Here a1 = 6, b1 = −4, c1 = 3, a2 = 3, b2 = −2, c2 = 1. Also a1b2 = −12 and

a2b1 = −12. Hence a1b2 = a2b1.

Then substitute 3x− 2y = v. Also on differentiation we have 3 − 2
dy

dx
=
dv

dx

dy

dx
=

2(3x− 2y) + 3

(3x− 2y) + 1

dy

dx
=

2v + 3

v + 1

Therefore

3 − 2

(

2v + 3

v + 1

)

=
dv

dx

dv

dx
=

3v + 3 − 4v − 6

v + 1
dv

dx
=

−(v + 3)

v + 1

−v + 1

v + 3
dv = dx

Now,
v + 1

v + 3
=
v + 3 − 2

v + 3
=
v + 3

v + 3
− 2

v + 3
= 1 − 2

v + 3

−
(

1 − 2

v + 3

)

dv = dx

On integration we have

−v + 2 log(v + 3) = x+ c

−(3x− 2y) + 2 log(3x− 2y + 3) = x+ c

2 log(3x− 2y + 3) = 4x− 2y + c

log(3x− 2y + 3) = 2x− y + c1
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Exercise:

1. Find the solution of the following equations:

(a)
dy

dx
=
x+ 2y + 3

2x+ y + 3
(b)

dy

dx
=

x− y + 3

2x− 2y + 5

(c)
dy

dx
=

3y − 7x+ 7

3x− 7y − 3
(d)

dy

dx
=
x+ y + 1

x+ y − 1

5.4 Exact equations

Suppose the first order equation y′ = f(x, y) is written in the form

y′ = −M(x, y)

N(x, y)

Then

M(x, y) +N(x, y)y′ = 0 (5.8)

where M and N are real-valued function defined for real x and y on some rectangle

R.

Definition 5.13. The equation M(x, y) +N(x, y)y′ = 0 is said to be exact in R if

there exists a function F having continuous first partial derivatives such that

∂F

∂x
= M and

∂F

∂y
= N in R (5.9)

Example 5.14. Consider the equation ydx+ xdy = 0. Here M = y and N = x.

Then there exists a function F = xy such that
∂F

∂x
= y = M and ∂F

∂y
= x = N .

Hence the given equation is exact.

Theorem 5.15. 8uppose the equation

M(x, y) +N(x, y)y′ = 0 (5.10)

is exact in a rectangle R and F is a real-valued function such that

∂F

∂x
= M and

∂F

∂y
= N in R (5.11)

Every differentiable function φ defined implicitly by a relation

F (x, y) = c (c = constant)
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is a solution of (5.10) whose graph lies in R arises this way.

Proof. Suppose M(x, y) +N(x, y)y′ = 0 is exact in R and
∂F

∂x
= M and ∂F

∂y
= N in

R.

Then
∂F (x, y)

∂x
+
∂F (x, y)

∂y
y′ = 0.

If φ is any solution on some interval I, then

∂F (x, φ(x))

∂x
+
∂F (x, φ(x))

∂y
φ′(x) = 0 for all x ∈ I.

If Φ(x) = F (x, φ(x)) then

Φ′(x) =
∂F

∂x
+
∂F

∂y
φ′(x) = 0

That is Φ′(x) = 0 and so Φ(x) = c, a constant. Hence F (x, φ(x)) = c.

Thus the solution φ must be a function given by F (x, y) = c.

Conversely, if φ is a differentiable function on some interval I defined by the

relation F (x, y) = c. Then F (x, φ(x)) = c for all x ∈ I.

Differentiating this we get
∂F (x, φ(x))

∂x
+
∂F (x, φ(x))

∂y
φ′(x) = 0

Thus M(x, φ(x)) +N(x, φ(x))φ′(x) = 0 Hence φ(x) is a solution of (5.10).

Remark 5.16. If M(x, y) +N(x, y)y′ = 0 is exact then

M(x, y)dx+N(x, y)dy = 0

∂F

∂x
dx+

∂F

∂y
dy = 0

dF = 0

Example 5.17. Consider the equation y′ = −x
y
. Then

dy

dx
= −x

y
xdx+ ydy = 0

d

(

x2 + y2

2

)

= 0

x2 + y2

2
= c1

x2 + y2 = 2c1 = c
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Thus any differentiable function defined by the relation x2 + y2 = c, where c is a

constant is a solution of given equation.

Note: Consider the equation with variable separated. Any such equation is a special

case of an exact equation.

If we write equation M(x, y) +N(x, y)y′ = 0 as

g(x)dx = h(y)dy
∫

g(x)dx =

∫

h(y)dy

G(x) = H(y)

where G(x) =
∫

g(x)dx and H(y) =
∫

h(y)dy. That is G′(x) = g(x) and H ′(y) =

h(y). It is clear that F is given by F (x, y) = G(x) −H(y).

Theorem 5.18. Let M,N be two real-valued functions which have continuous first

partial derivatives on some rectangle

R : |x− x0| ≤ a, |y − y0| ≤ b.

Then the equation

M(x, y) +N(x, y)y′ = 0

is exact in R if and only if
∂M

∂y
=
∂N

∂x
in R (5.12)

Proof. Suppose M(x, y) + N(x, y)y′ = 0 is exact in R. Let F be a function which

has continuous second derivatives such that

∂F

∂x
= M and

∂F

∂y
= N.

Then

∂2F

∂y∂x
=

∂

∂y

(

∂F

∂x

)

=
∂M

∂y

∂2F

∂x∂y
=

∂

∂x

(

∂F

∂y

)

=
∂N

∂x

Since
∂2F

∂y∂x
=

∂2F

∂x∂y
for a function F we have

∂M

∂y
=
∂N

∂x
.
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conversely, suppose
∂M

∂y
=
∂N

∂x
. We need to find a function F satisfying

∂F

∂x
= M

and
∂F

∂y
= N .

Suppose if we had such a function then

F (x, y) − F (x0, y0) = F (x, y) − F (x0, y) + F (x0, y) − F (x0, y0)

=

x
∫

x0

∂F (s, y)

∂x
ds+

y
∫

y0

∂F (x0, t)

∂y
dt

=

x
∫

x0

M(s, y) ds+

y
∫

y0

N(x0, t) dt (5.13)

Similarly we have

F (x, y) − F (x0, y0) = F (x, y) − F (x, y0) + F (x, y0) − F (x0, y0)

=

y
∫

y0

∂F (x, t)

∂y
dt+

x
∫

x0

∂F (s, y0)

∂x
ds

=

y
∫

y0

N(x, t) dt+

x
∫

x0

M(s, y0) ds (5.14)

Now we define F by

F (x, y) =

x
∫

x0

M(s, y) ds+

y
∫

y0

N(x0, t) dt (5.15)

From (5.15) we have F (x0, y0) = 0. Also

∂F (x, y)

∂x
=

∂

∂x





x
∫

x0

M(s, y) ds+

y
∫

y0

N(x0, t) dt



 = M(x, y)

for all (x, y) in R.

From (5.14) we would guess that F is also given by

F (x, y) =

x
∫

x0

M(s, y0) ds+

y
∫

y0

N(x, t) dt (5.16)
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Therefore
∂F (x, y)

∂y
=

∂

∂y





x
∫

x0

M(s, y0) ds+

y
∫

y0

N(x, t) dt



 = N(x, y)

for all (x, y) in R. Thus we found our F .

In order to show that (5.16) is valid where F is the function given by (5.15).

We consider the difference

F (x, y) −
[

x
∫

x0

M(s, y0) ds+
y
∫

y0

N(x, t) dt

]

=





x
∫

x0

M(s, y) ds+

y
∫

y0

N(x0, t) dt



−





x
∫

x0

M(s, y0) ds+

y
∫

y0

N(x, t) dt





=





x
∫

x0

M(s, y) ds−
x
∫

x0

M(s, y0) ds



−





y
∫

y0

N(x, t) dt−
y
∫

y0

N(x0, t) dt





=

x
∫

x0

(M(s, y) −M(s, y0)) ds−
y
∫

y0

(N(x, t) −N(x0, t)) dt

=

x
∫

x0

y
∫

y0

∂M(s, t)

∂t
dt ds−

y
∫

y0

x
∫

x0

∂N(s, t)

∂s
ds dt

=

x
∫

x0

y
∫

y0

(

∂M(s, t)

∂t
− ∂N(s, t)

∂s

)

dt ds

= 0, since
∂M

∂y
=
∂N

∂x

Therefore F (x, y) =
x
∫

x0

M(s, y0) ds+
y
∫

y0

N(x, t) dt. This completes the proof.

Rules to find the solution of exact equations

1. Verify whether given equation M(x, y) +N(x, y)y′ = 0 is exact.

2. If exact, integrate M with respect to x keeping y as constant.

3. Find out those terms in N which are free from x and integrate those terms

with respect to y.
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4. The sum of these two expressions equated to an arbitrary constant is the

required general solution of given exact equation.

Example 5.19. Consider the equation

y′ =
3x2 − 2xy

x2 − 2y

This equation can be written as (3x2 − 2xy)dx − (x2 − 2y)dy = 0. That is

(3x2 − 2xy)dx+ (2y − x2)dy = 0.

Here M = 3x2 − 2xy and N = 2y − x2. Then
∂M

∂y
=
∂N

∂x
= −2x. Hence the

given equation is exact.

Then integrating M with respect to x keepin y as constant we have

∫

M dx =

∫

(3x2 − 2xy) dx

=
3x3

3
− 2x2y

2
= x3 − x2y

and S = the terms of N free from x = 2y. Then
∫

S dy =

∫

2y dy = y2.

Hence x3 − x2y + y2 = c is the general solution of given equation.

Exercise:

Verify the following equations are exact and solve them.

(a) 2xy dx+ (x2 + 3y2) dy = 0

(b) x2y3 dx+ x3y2 dy = 0

(c) (x+ y) dx+ (x− y) dy = 0

Integrating factor
Consider the equation

M(x, y)dx+N(x, y)dy = 0. (5.17)

Sometimes the equation (5.17) may not be exact. So we find a function ′u′ nowhere

zero such that

u(x, y)M(x, y) dx+ u(x, y)N(x, y) dy = 0

is exact. Such a function ′u′ is called an integrating factor.
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Example 5.20. Consider the equation y dx− x dy = 0.

Here M = y and N = −x. Then
∂M

∂y
= 1 and

∂N

∂x
= −1. Therefore

∂M

∂y
6= ∂N

∂x
and so the given equation is not exact.

When the equation is multiplied by
1

y2
we get

y dx− x dy

y2
= 0

⇒ d

(

x

y

)

= 0

⇒ x

y
= c1

⇒ y =
x

c1
= cx where 1

c1
= c

That is y = cx. Thus the equation becomes exact. Hence the integrating factor

is
1

y2
.

Result:

1. If
1

N

(

∂M

∂y
− ∂N

∂x

)

= g(x), a function of x only then µ = e
∫

g(x) dx is an

integrating factor of M dx+N dy = 0.

2. If
1

M

(

∂M

∂y
− ∂N

∂x

)

= h(y), a function of y only then µ = e
∫

h(y) dy is an

integrating factor of M dx+N dy = 0.

3. If M dx + N dy = 0 is a homogeneous equation where M and N are ho-

mogeneous function of degree n and if Mx + Ny 6= 0, then
1

mx+ ny
is an

integrating factor.

4. If M dx + N dy = 0 is of the form yf(xy)dx + xg(xy)dy = 0 where f(xy) 6=
g(xy) then

1

mx− ny
is an integrating factor.

Example 5.21. Consider the equation (x2 + y2 + x)dx+ xydy = 0.

Here
∂M

∂y
= 2y and

∂N

∂x
= y. Clearly the given equation is not exact.

Then
1

N

(

∂M

∂y
− ∂N

∂x

)

=
y

xy
=

1

x
.

Therefore the integrating factor is µ = e
∫

g(x) dx = e
∫

1

x
dx = elog x = x.
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Exercise:

Find an integrating factor for the following equation.

(a) (2y2 + 2)dx+ 3xy2dy = 0

(b) (5x2y2 + 2y)dx+ (3x4y + 2x)dy = 0

5.5 Method of successive approximations

Consider the equation

y′ = f(x, y) (5.18)

where f is any continuous real-valued function defined on some rectangle

R : |x− x0| ≤ a, |y − y0| ≤ b, (a, b > 0),

in the real (x, y)−plane.

To show: On some interval I containing x0 there is a solution φ of (5.18) satisfying

φ(x0) = y0 (5.19)

That is there is a real-valued differentiable function φ satisfying φ(x0) = y0 such

that the points (x, φ(x)) are in R for x in I, and φ′(x) = f(x, φ(x)) for all x in I.

Such a function φ is called a solution to the initial value problem

y′ = f(x, y), y(x0) = y0 on I. (5.20)

We now show that the initial value problem is equivalent to an integral equation

namely

y = y0 +

x
∫

x0

f(t, y) dt on I. (5.21)

Suppose φ is a solution to (5.21) on I with (x, φ(x)) is in R, then

φ(x) = y0 +
x
∫

x0

f(t, φ(t)) dt

where φ is a real valued continuous function on I.

Theorem 5.22. A function φ is a solution of the initial value problem y′ = f(x, y),

y(x0) = y0 on an interval I if and only if it is a solution of the integral equation

y = y0 +
x
∫

x0

f(t, y) dt on I.
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Proof. Suppose φ is a solution of the initial value problem y′ = f(x, y), y(x0) = y0

on I. Then

φ′(t) = f(t, φ(t)) (5.22)

on I. Since φ is continuous on I anf f is continuous on R, the function F defined

by F (t) = f(t, φ(t)) is continuous on I. Integrating (5.22) from x0 to x we obtain

x
∫

x0

φ′(t) dt =

x
∫

x0

f(t, φ(t)) dt

[φ(t)]xx0
=

x
∫

x0

f(t, φ(t)) dt

φ(x) − φ(x0) =

x
∫

x0

f(t, φ(t)) dt

φ(x) = φ(x0) +

x
∫

x0

f(t, φ(t)) dt

and since φ(x0) = y0, we have

φ(x) = y0 +
x
∫

x0

f(t, φ(t)) dt

Hence φ is a solution of y = y0 +
x
∫

x0

f(t, y) dt

Conversely, suppose φ is a solution of y = y0 +
x
∫

x0

f(t, y) dt on I. Then

φ(x) = φ(x0) +

x
∫

x0

f(t, φ(t)) dt (5.23)

On differentiating and using fundamental theorem of calculus, we have

φ′(x) =
d

dx

x
∫

x0

f(t, φ(t)) dt = f(x, φ(x)).

Also from (5.23), we have φ(x0) = y0.

Hence φ is a solution of the initial value problem y′ = f(x, y), y(x0) = y0. Hence

the theorem.
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Successive approximation

Consider the function φ0 defined by

φ0(x) = y0

This function satisfies the initial condition φ0(x0) = y0, but does not in general

satisfy (5.21). However, if we compute

φ1(x) = y0 +

x
∫

x0

f(t, φ0(t)) dt

= y0 +

x
∫

x0

f(t, y0) dt

We might expect that φ1 is a closer approximation to a solution than φ0. If we

continue the process and define successively φ0(x) = y0

φk+1(x) = y0 +

x
∫

x0

f(t, φk(t)) dt, (k = 0, 1, 2, · · · ) (5.24)

on taking the limit as k → ∞, that we would obtain

φk(x) → φ(x)

where φ would satisfy

φ(x) = y0 +
x
∫

x0

f(t, φ(t)) dt

This φ is our desired solution. We call the functions φ1, φ2, · · · defined by (5.24)

successive approximations to a solution of the integral equation (5.21) or the initial

value problem (5.20).

Example 5.23. Consider the initial value problem y′ = xy, y(0) = 1.

Successive approximation method

Then the integral equation corresponding to this initial value problem is

y = 1 +
x
∫

0

ty dt

and the successive approximation are given by φ0(x) = 1

φk+1(x) = 1 +
x
∫

0

tφk(t) dt

.
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Thus

φ1(x) = 1 +

x
∫

0

tφ0(t) dt

= 1 +

x
∫

0

t dt

= 1 +

(

t2

2

)x

0

= 1 +
x2

2

φ2(x) = 1 +

x
∫

0

tφ1(t) dt

= 1 +

x
∫

0

t

(

1 +
t2

2

)

dt

= 1 +

(

t+
t3

2

)

dt

= 1 +

(

t2

2
+

t4

(4)(2)

)x

0

= 1 +

(

x2

2
+

x4

22 2 !

)

= 1 +
x2

2
+

1

2 !

(

x2

2

)2

Then by induction we obtain

φk(x) = 1 +
x2

2
+

1

2 !

(

x2

2

)2

+ · · · + 1

k !

(

x2

2

)k

It is clear that φk(x) is the partial sum for the series expansion of the function

φ(x) = ex2/2. Hence as limit k → ∞, φk(x) → φ(x) for all x.

Thus φ(x) = ex2/2 is the solution of given equation.

Usual method consider the equation y′ = xy. Then by variable separable method

we have
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dy

dx
= xy

dy

y
= x dx

∫

dy

y
=

∫

x dx

log y =
x2

2
+ c

y = e(x
2/2)+c

y(0) = 1 ⇒ c = 0

Hence y = ex2/2 is the solution of the given equation.

Note:

Since f is continuous on R, it is bounded there. Hence there exists M > 0 such

that |f(x, y)| ≤M for all (x, y) ∈ R∗.

Theorem 5.24. The successive approximations φk, defined by (5.24), exist as con-

tinuous functions on

I : |x− x0| ≤ α =minimum {a, b/M},

and (x, φ(x)) is in R for x in I. Indeed, the φk satisfy

|φk(x) − y0| ≤M |x− x0| (5.25)

for all x in I.

Proof. Note: Since for x ∈ I, |x − x0| ≤ b/M , the inequality |φk(x) − y0| ≤
M |x− x0| ≤ b for all x in I, which shows that (x, φk(x)) are in R for x in I.

The geometric interpretation of the inequality |φk(x) − y0| ≤ M |x − x0| is that

the graph of each φk lies in the region T in R bounded by the two lines

y − y0 = M(x− x0) and y − y0 = −M(x− x0)

and the lines

x− x0 = α and x− x0 = −α

Proof of theorem

We prove this by induction.
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Clearly φ0 exists on I as a continuous function, and satisfies (5.25) with k = 0,

since |φ0(x) − y0| = |y0 − y0| = 0 ≤M |x− x0|.

Also, since (x, y0) is in R, (x, φ0(x)) is in R. Now,

|φ1(x) − y0| =

∣

∣

∣

∣

∣

∣

y0 +

x
∫

x0

f(t, φ0(t)) dt− y0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x
∫

x0

f(t, φ0(t)) dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

|f(t, φ0(t))| dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

M

x
∫

x0

dt

∣

∣

∣

∣

∣

∣

= M |x− x0|

Therefore |φ1(x) − y0| ≤ M |x − x0|. Thus φ1 satisfies the inequality. Since f is

continuous on R, the function F0 defined by F0 = f(t, y0) is continuous on I.

Thus φ1 given by

φ1(x) = y0 +
x
∫

x0

f(t, φ0(t)) dt = y0 +
x
∫

x0

f(t, y0) dt = y0 +
x
∫

x0

F0(t) dt is continuous

on I.

Suppose we assume that the theorem is true for the functions φ0, φ1, φ2, · · ·φk.

To prove: The result is true for φk+1.

We know that (t, φk(t)) is in R for t ∈ I. Thus the function Fk given by Fk(t) =

f(t, φk(t)) exist for t ∈ I. It is continuous on I, since f is continuous on R and φk

is continuous on I.

Therefore φk+1 is given by

φk+1(x) = y0 +
x
∫

x0

Fk(t) dt

exists as a continuous function on I.
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Also,

|φk+1(x) − y0| ≤

∣

∣

∣

∣

∣

∣

x
∫

x0

Fk(t) dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

|Fk(t)| dt

∣

∣

∣

∣

∣

∣

≤ M |x− x0|

Thus |φk+1(x) − y0| ≤ M |x − x0|. Hence φk+1 satisfies the inequality. Hence the

theorem.

Example 5.25. Consider the initial value problem y′ = 3y + 1, y(0) = 2.

(a) Compute the first four approximations φ1, φ1, φ2, φ3 to the solution.

(b) Compute the solution by using one of the methods in section (5.2) to (5.6)

(c) Compare the results of (b) and (c).

Solution:

(a) Given y′ = 3y + 1, y(0) = 2.

Here f(x, y) = 3y+ 1, x0 = 0, y0 = 2. Then The integral equation corresponding

to initial value problem is

y = y0 +
x
∫

x0

f(t, y)dt = 2 +
x
∫

0

(3y + 1) dt

and successive approximation are given by

φ0(x) = y0 = 2

φk+1(x) = y0 +
x
∫

x0

f(t, φk(t)) dt, (k = 0, 1, 2, · · · )

That is φk+1(x) = 2 +
x
∫

0

(3φk(t) + 1) dt.
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Thus

φ1(x) = 2 +

x
∫

0

(3φ0(t) + 1) dt

= 2 +

x
∫

0

(6 + 1) dt

φ1(x) = 2 + 7x

φ2(x) = 2 +

x
∫

0

(3φ1(t) + 1) dt

= 2 +

x
∫

0

(3(2 + 7t) + 1) dt

= 2 +

x
∫

0

(7 + 21t) dt

φ2(x) = 2 + 7x+
21x2

2

φ3(x) = 2 +

x
∫

0

(3φ2(t) + 1) dt

= 2 +

x
∫

0

(3(2 + 7t+
21t2

(
2)) + 1) dt

= 2 +

x
∫

0

(7 + 21t+
63t2

2
) dt

φ2(x) = 2 + 7x+
21x2

2
+

63x3

6

(b) Given y′ = 3y + 1, y(0) = 2. This is a linear equation of the form y′ + g(x)y =

h(x). Here g(x) = −3 and h(x = 1. Clearly g, h are continuous functions. Then the

solution is given by

φ(x) = e−Q(x)
x
∫

x0

eQ(t)h(t)dt+ ce−Q(x), where Q(x) =
x
∫

x0

g(t)dt

Therefore Q(x) =
x
∫

0

(−3)dt = −3x. Thus
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φ(x) = e3x

x
∫

0

e−3tdt+ ce3x =
−1

3
+
e3x

3
+ ce3x.

Also y(0) = 2 implies that c = 2. Hence φ(x) =
1

3

(

7e3x − 1
)

.

(c) Now using the series expansion of e3x, we have

e3x = 1 +
3x

1 !
+

(3x)2

2 !
+

(3x)3

3 !
+ · · ·

φ(x) =
1

3

(

7e3x − 1
)

=
1

3

[

7

(

1 +
3x

1 !
+

(3x)2

2 !
+

(3x)3

3 !
+ · · ·

)

− 1

]

=
1

3

[

6 + 21x+
63x2

2 !
+

7(3x)3

3 !
+ · · ·

]

= 2 + 7x+
21x2

2 !
+

63x3

3 !
+ · · ·

Taking limit as k → ∞ we have φk(x) → φ(x). Hence φ(x) =
1

3

(

7e3x − 1
)

is the

solution of given initial value problem.

Exercise:

Compute the first four approximation φ0, φ1, φ2, φ3.

(a) y′ = x2 + y2, y(0) = 0 (b) y′ = 1 + xy, y(0) = 1

(c) y′ = y2, y(0) = 0 (d) y′ = y2, y(0) = 1

5.6 Lipschitz condition

Let f be a function defined for (x, y) in a set S. We say f satisfy a Lipschitz

condition on S if there exists a constant K > 0 such that

|f(x, y1) − f(x, y2)| ≤ K|y1 − y2|

for all (x, y1), (x, y2) in S. The constant K is called a Lipschitz constant.

Note:

If f is continuous and satisfies a Lipschitz condition on the rectangle R, then

the successive approximations converge to a solution of the initial value problem on

|x− x0| ≤ α.
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Theorem 5.26. Suppose S is either a rectangle

|x− x0| ≤ a, |y − y0| ≤ b, (a, b > 0),

or a strip

|x− x0| ≤ a, |y| <∞, (a > 0),

and that f is a real-valued function defined on S such that
∂f

∂y
exists, is continuous

on S, and
∣

∣

∣

∣

∂f

∂y
(x, y)

∣

∣

∣

∣

≤ K, ((x, y) in S),

for some K > 0. Then f satisfies a Lipschitz condition on S with Lipschitz constant

K.

Proof. Supppose

∣

∣

∣

∣

∂f

∂y
(x, y)

∣

∣

∣

∣

≤ K, ((x, y) in S). Then we have

f(x, y1) − f(x, y2) =

y1
∫

y2

∂f

∂y
(x, t) dt

|f(x, y1) − f(x, y2)| =

∣

∣

∣

∣

∣

∣

y1
∫

y2

∂f

∂y
(x, t) dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

y1
∫

y2

∣

∣

∣

∣

∂f

∂y
(x, t)

∣

∣

∣

∣

dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

y1
∫

y2

K dt

∣

∣

∣

∣

∣

∣

= K|y1 − y2|

Therefore |f(x, y1) − f(x, y2)| ≤ K|y1 − y2| for all (x, y1), (x, y2) in S. Hence f

satisfies Lipschitz condition on S.

Example 5.27. Consider a function f(x, y) = xy2 in R : |x| ≤ 1, |y| ≤ 1.

Now for (x, y) in R,

∂f

∂y
(x, y) = 2xy

∣

∣

∣

∣

∂f

∂y
(x, y)

∣

∣

∣

∣

= |2xy|
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≤ 2 |x| |y|
≤ 2, since |x| ≤ 1, |y| ≤ 1

Alternate method:

Now for (x, y1), (x, y2) in R,

|f(x, y1) − f(x, y2)| = |xy2
1 − xy2

2|
= |x| |y2

1 − y2
2|

= |x| |(y1 + y2) (y1 − y2)|
= |x| |y1 + y2| |y1 − y2|
≤ |x| (|y1| + |y2|) |y1 − y2|
≤ 2|y1 − y2|, since |x| ≤ 1, |y| ≤ 1

Thus |f(x, y1) − f(x, y2)| ≤ 2|y1 − y2|. Hence f satisfies Lipschitz condition on R.

Example 5.28. Consider a function f(x, y) = xy2 on the strip S : |x| ≤ 1, |y| <
∞.

Now for (x, y) in R,

∂f

∂y
(x, y) = 2xy

∣

∣

∣

∣

∂f

∂y
(x, y)

∣

∣

∣

∣

= |2xy|

≤ 2 |x| |y|
< ∞, since |x| ≤ 1, |y| <∞

Hence f does not satisfy Lipschitz condition on the strip.

Example 5.29. Consider a continuous function f(x, y) = y2/3 on the rectangle

R : |x| ≤ 1, |y| ≤ 1. Now for (x, y) in R,

∂f

∂y
(x, y) =

2

3
y−1/3

≤ 2

3
|y−1/3|

→ ∞, as y → 0

Hence f does not satisfy Lipschitz condition on the strip.
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Exercise:

Show that the following function satisfies Lipschitz condition on the set S.

(a) f(x, y) = 4x2 + y2 on S : |x| ≤ 1, |y| ≤ 1

(b) f(x, y) = x2 cos2 y + y sin2 x on S : |x| ≤ 1, |y| <∞.

5.7 Convergence of Successive approximation

We now prove the main existence theorem.

Theorem 5.30. (Existence Theorem) Let f be a continuous real-valued function on

the rectangle

R : |x− x0| ≤ a, |y − y0| ≤ b, (a, b > 0),

and let |f(x, y)| ≤M for all (x, y) in R. Further suppose that f satisfies a Lipschitz

condition with constant K in R. Then the successive approximations

φ0(x) = y0, φk+1(x) = y0 +

x
∫

x0

f(t, φk(t)) dt, (k = 0, 1, 2, · · · ),

converge on the interval

I : |x− x0| ≤ α = minimum {a, b/M}

to a solution φ of the initial value problem

y′ = f(x, y), y(x0) = y0 on I.

Proof. (a) Convergence of {φk(x)}.
φk may be written as

φk = φ0 − φ0 + φ1 − φ1 + · · · + φk−1 − φk−1 + φk

φk = φ0 + (φ1 − φ0) + (φ2 − φ1) + · · · + (φk − φk−1)

Hence φk is a partial sum for the series

φ0(x) +
∞
∑

p=1

(φp(x) − φp−1(x)) (5.26)

To show: The sequence {φk(x)} converges. It is equivalent to show that the series

(5.26) converges. Then by Theorem 5.24, the function φp all exists as continuous

function on I and (x, φp(x)) is in R for x in I.

Moreover |φ1(x)−φ0(x)| ≤M |x−x0| for x in I. That is |φ1(x)−y0| ≤M |x−x0|
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for x in I.

Now

φ2(x) − φ1(x) =



y0 +

x
∫

x0

f(t, φ1(t)) dt



−



y0 +

x
∫

x0

f(t, φ0(t)) dt





=

x
∫

x0

[f(t, φ1(t)) − f(t, φ0(t))] dt

|φ2(x) − φ1(x)| =

∣

∣

∣

∣

∣

∣

x
∫

x0

[f(t, φ1(t)) − f(t, φ0(t))] dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

|f(t, φ1(t)) − f(t, φ0(t))| dt

∣

∣

∣

∣

∣

∣

Since f satisfies Lipschitz condition, |f(x, y1) − f(x, y2)| ≤ K|y1 − y2|. Therefore,

|φ2(x) − φ1(x)| ≤

∣

∣

∣

∣

∣

∣

x
∫

x0

K |φ1(t) − φ0(t)| dt

∣

∣

∣

∣

∣

∣

≤ K M

∣

∣

∣

∣

∣

∣

x
∫

x0

|t− x0| dt

∣

∣

∣

∣

∣

∣

= K M

∣

∣

∣

∣

∣

∣

x
∫

x0

(t− x0) dt

∣

∣

∣

∣

∣

∣

= K M

[

(t− x0)
2

2

]x

x0

, since x− x0 ≥ 0

= K M
(x− x0)

2

2

Therefore |φ2(x) − φ1(x)| ≤ K M
(x− x0)

2

2
if x ≥ x0.

If x ≤ x0, the same result is valid.

We shall prove by induction that

|φp(x) − φp−1(x)| ≤
M Kp−1|x− x0|p

p !
for all x ∈ I. (5.27)
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The result is true for p = 1 and p = 2.

Let us assume that x ≥ x0 (the proof is similar for x ≤ x0).

Assume the result (5.27) is true for p = m.

To prove: For p = m+ 1.

φm+1(x) − φm(x) =



y0 +

x
∫

x0

f(t, φm(t)) dt



−



y0 +

x
∫

x0

f(t, φm−1(t)) dt





=

x
∫

x0

[f(t, φm(t)) − f(t, φm−1(t))] dt

|φm+1(x) − φm(x)| =

∣

∣

∣

∣

∣

∣

x
∫

x0

[f(t, φm(t)) − f(t, φm−1(t))] dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

|f(t, φm(t)) − f(t, φm−1(t))| dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

K |φm(t) − φm−1(t)| dt

∣

∣

∣

∣

∣

∣

, by Lipschitz condition

≤ K

∣

∣

∣

∣

∣

∣

x
∫

x0

M Km−1|t− x0|m
m !

dt

∣

∣

∣

∣

∣

∣

=
M Km

m !

∣

∣

∣

∣

∣

∣

x
∫

x0

|t− x0|m dt

∣

∣

∣

∣

∣

∣

=
M Km

m !

∣

∣

∣

∣

∣

∣

x
∫

x0

(t− x0)
m dt

∣

∣

∣

∣

∣

∣

, since x− x0 ≥ 0

=
M Km

m !

[

(t− x0)
m+1

(m+ 1)

]x

x0

=
M Km(x− x0)

(m+1)

(m+ 1) !
, for x ≥ x0

Therefore |φm+1(x) − φm(x)| ≤ M Km|x− x0|(m+1)

(m+ 1) !
for all x in I.

Hence (5.27) is true for p = m+ 1. Hence (5.27) is true for all p. The infinite series
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φ0(x) +
∞
∑

p=1

(φp(x) − φp−1(x))

is absolutely convergent, that is, the series

|φ0(x)| +
∞
∑

p=1

|φp(x) − φp−1(x)| (5.28)

is convergent on I. Indeed, from (5.27), we see that

|φp(x) − φp−1(x)| ≤
M Kp|x− x0|p

K p !

which shows that P th term of the series in (5.28) is less than or equal to M
K

times

P th term of power series for eK |x−x0|.

Since the power series for eK |x−x0| is convergent, the series (5.28) is convergent

for all x ∈ I. Therefore (5.26) is convergent on I. Hence kth partial sum of (5.26)

which is just φk(x) tends to a limit φ(x) as k → ∞ for each x ∈ I.

(b) Properties of the limit φ

This limit function φ is a solution to our problem on I.

To show φ is continuous on I.

If x1, x2 are in I.

|φk+1(x1) − φk+1(x2)| =

∣

∣

∣

∣

∣

∣

x1
∫

x0

f(t, φk(t)) dt−
x2
∫

x0

f(t, φk(t)) dt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x1
∫

x0

f(t, φk(t)) dt+

x0
∫

x2

f(t, φk(t)) dt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x1
∫

x2

f(t, φk(t)) dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x1
∫

x2

|f(t, φk(t))| dt

∣

∣

∣

∣

∣

∣

≤ M |x1 − x2|, since |f(x, y)| ≤M, for all (x, y) ∈ R.

By letting k → ∞, φk(x) → φ(x). Therefore

|φ(x1) − φ(x2)| ≤M |x1 − x2| (5.29)
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This shows that as x2 → x1, φ(x2) → φ(x1). That is φ is continuous on I.

Also letting x1 = x, x2 = x0 in (5.29), we obtain

|φ(x) − φ(x0)| ≤M |x− x0|

That is |φ(x) − y0| ≤M |x− x0| for x in I. Therefore the points (x, φ(x)) are in

R for all x in I.

(c) Estimate for |φ(x) − φk(x)|

We have φ(x) = φ0(x)+
∞
∑

p=1

(φp(x) − φp−1(x)) and φk(x) = φ0(x)+
k
∑

p=1

(φp(x) − φp−1(x)).

Using (5.27) we find that

|φ(x) − φk(x)| =

∣

∣

∣

∣

∣

∞
∑

p=0

[φp(x) − φp−1(x)] −
k
∑

p=0

[φp(x) − φp−1(x)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

p=k+1

[φp(x) − φp−1(x)]

∣

∣

∣

∣

∣

≤
∞
∑

p=k+1

|φp(x) − φp−1(x)|

≤
∞
∑

p=k+1

M

K

Kp|x− x0|p
p !

=
∞
∑

p=k+1

M

K

(Ka)p

p !
where |x− x0| ≤ a

=
M

K

∞
∑

p=k+1

(Ka)p

p !

≤ M

K

(Ka)k+1

(k + 1) !

∞
∑

p=0

(Ka)p

p !

≤ M

K

(Ka)k+1

(k + 1) !
eKa

Therefore

|φ(x) − φk(x)| ≤
M

K

(Ka)k+1

(k + 1) !
eKa (5.30)

Letting ǫk =
(Ka)k+1

(k + 1) !
. Since ǫk is a general term for the series for eKa we see that

ǫk → 0 as k → ∞. In terms of ǫk, (5.30) may be written as

144



|φ(x) − φk(x) ≤
M

K
eKa ǫk.

(d) Limit φ is a solution

To show

φ(x) = y0 +

x
∫

x0

f(t, φ(t)) dt for all x ∈ I (5.31)

Since f is continuous on R, φ is continuous in I, the function F given by F (t) =

f(t, φ(t)) is continuous on I. Now,

φk+1(x) = y0 +
x
∫

x0

f(t, φk(t)) dt and φk+1 → φ(x) as k → ∞.

Thus to prove (5.31), we must show that
x
∫

x0

f(t, φk(t)) dt→
x
∫

x0

f(t, φ(t)) dt

We have

∣

∣

∣

∣

∣

∣

x
∫

x0

f(t, φ(t)) dt−
x
∫

x0

f(t, φk(t)) dt

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x
∫

x0

[f(t, φ(t)) − f(t, φk(t))] dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

|f(t, φ(t)) − f(t, φk(t))| dt

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x
∫

x0

K |φ(t) − φk(t)| dt

∣

∣

∣

∣

∣

∣

≤ K
M

K
eKa ǫk

∣

∣

∣

∣

∣

∣

x
∫

x0

dt

∣

∣

∣

∣

∣

∣

= M eKa ǫk |x− x0|

which tends to zzero as k → ∞ for each x ∈ I. Hence
x
∫

x0

f(t, φk(t)) dt→
x
∫

x0

f(t, φ(t)) dt

as k → ∞. This completes the proof.

Theorem 5.31. The kth successive approximation φk to the solution φ of the initial

value problem y′ = f(x, y), y(x0) = y0 satisfies

|φ(x) − φk(x)| ≤
M

K

(Ka)k+1

(k + 1) !
eKa for all x in I.
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Exercise:

1. Consider the equation y′ = 1 − 2xy, y(0) = 0 and R : |x| ≤ 1
2
, |y| ≤ 1. Show

that f satisfies Lipschitz condition on R with Lipschitz constant K = 1.

2. Consider the equation y′ = 1 + y2, y(0) = 0 and R : |x| ≤ 1
2
, |y| ≤ 1. Show that

f satisfies Lipschitz condition on R with Lipschitz constant K = 1. Also find the

solution φ using separation of variable method. Then show that all the successive

approximation φk exists and φk(x) → φ(x) for each x satisfying |x| ≤ 1
2
.
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